特征选择方法在提高学生学业成绩分类准确率中的应用

Luthfia Rahman, N. A. Setiawan, A. E. Permanasari
{"title":"特征选择方法在提高学生学业成绩分类准确率中的应用","authors":"Luthfia Rahman, N. A. Setiawan, A. E. Permanasari","doi":"10.1109/ICITISEE.2017.8285509","DOIUrl":null,"url":null,"abstract":"Data mining began to be applied in various fields, one of them on educational data. By exploring information or knowledge in a data allows an institution to improve the learning process and the quality of the institution. This research proposes feature selection techniques in improving Student's Academic Performance classification accuracy. The algorithm used is Naive Bayes, Decision Tree, and Artificial Neural Network, which will be applied to the features selection; wrapper and information gain. The application of feature selection is intended to obtain a higher accuracy value. When compared to the embedded method in previous studies, the feature selection on this experiment has a lower accuracy rate.","PeriodicalId":130873,"journal":{"name":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","volume":"9 40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Feature selection methods in improving accuracy of classifying students' academic performance\",\"authors\":\"Luthfia Rahman, N. A. Setiawan, A. E. Permanasari\",\"doi\":\"10.1109/ICITISEE.2017.8285509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining began to be applied in various fields, one of them on educational data. By exploring information or knowledge in a data allows an institution to improve the learning process and the quality of the institution. This research proposes feature selection techniques in improving Student's Academic Performance classification accuracy. The algorithm used is Naive Bayes, Decision Tree, and Artificial Neural Network, which will be applied to the features selection; wrapper and information gain. The application of feature selection is intended to obtain a higher accuracy value. When compared to the embedded method in previous studies, the feature selection on this experiment has a lower accuracy rate.\",\"PeriodicalId\":130873,\"journal\":{\"name\":\"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)\",\"volume\":\"9 40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITISEE.2017.8285509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITISEE.2017.8285509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

数据挖掘开始在各个领域得到应用,其中之一就是教育数据。通过探索数据中的信息或知识,可以使机构改进学习过程和机构质量。本研究提出了特征选择技术在提高学生学业成绩分类准确性方面的应用。采用朴素贝叶斯、决策树、人工神经网络等算法进行特征选择;包装器和信息增益。特征选择的应用是为了获得更高的精度值。与以往研究的嵌入方法相比,本实验的特征选择准确率较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection methods in improving accuracy of classifying students' academic performance
Data mining began to be applied in various fields, one of them on educational data. By exploring information or knowledge in a data allows an institution to improve the learning process and the quality of the institution. This research proposes feature selection techniques in improving Student's Academic Performance classification accuracy. The algorithm used is Naive Bayes, Decision Tree, and Artificial Neural Network, which will be applied to the features selection; wrapper and information gain. The application of feature selection is intended to obtain a higher accuracy value. When compared to the embedded method in previous studies, the feature selection on this experiment has a lower accuracy rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信