关于二进制字母代码

D. Sheinwald
{"title":"关于二进制字母代码","authors":"D. Sheinwald","doi":"10.1109/DCC.1992.227470","DOIUrl":null,"url":null,"abstract":"Binary alphabetical codes, which are prefix free, fixed-to-variable binary codes for discrete memoryless sources, in which the lexicographic order of the codewords agrees with the alphabet order of the respective source letters, are studied. A necessary and sufficient condition on the sequence of codeword length of any such code is proved. A new upper bounds on the redundancy of alphabetical codes relative to the optimal prefix free, fixed-to-variables codes-the Huffman codes-is proved. An adaptation of the Ziv-Lempel algorithm making it lexicographic order preserving, without any additional redundancy, is presented.<<ETX>>","PeriodicalId":170269,"journal":{"name":"Data Compression Conference, 1992.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On binary alphabetical codes\",\"authors\":\"D. Sheinwald\",\"doi\":\"10.1109/DCC.1992.227470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binary alphabetical codes, which are prefix free, fixed-to-variable binary codes for discrete memoryless sources, in which the lexicographic order of the codewords agrees with the alphabet order of the respective source letters, are studied. A necessary and sufficient condition on the sequence of codeword length of any such code is proved. A new upper bounds on the redundancy of alphabetical codes relative to the optimal prefix free, fixed-to-variables codes-the Huffman codes-is proved. An adaptation of the Ziv-Lempel algorithm making it lexicographic order preserving, without any additional redundancy, is presented.<<ETX>>\",\"PeriodicalId\":170269,\"journal\":{\"name\":\"Data Compression Conference, 1992.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Compression Conference, 1992.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1992.227470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Compression Conference, 1992.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1992.227470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

研究了离散无记忆源的无前缀、固定到可变的二进制码,其中码字的字典顺序与源字母的字母表顺序一致。证明了任意这种码的码字长度序列的一个充分必要条件。证明了字母码相对于最优无前缀、固定变量码(Huffman码)的冗余度的一个新的上界。提出了一种自适应的Ziv-Lempel算法,使其保持字典顺序,没有任何额外的冗余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On binary alphabetical codes
Binary alphabetical codes, which are prefix free, fixed-to-variable binary codes for discrete memoryless sources, in which the lexicographic order of the codewords agrees with the alphabet order of the respective source letters, are studied. A necessary and sufficient condition on the sequence of codeword length of any such code is proved. A new upper bounds on the redundancy of alphabetical codes relative to the optimal prefix free, fixed-to-variables codes-the Huffman codes-is proved. An adaptation of the Ziv-Lempel algorithm making it lexicographic order preserving, without any additional redundancy, is presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信