采用共识方法构建地图集

L. Ramus, G. Malandain
{"title":"采用共识方法构建地图集","authors":"L. Ramus, G. Malandain","doi":"10.1109/ISBI.2009.5193271","DOIUrl":null,"url":null,"abstract":"Atlas-based segmentation has been shown to provide promising results to delineate critical structures for radiotherapy planning. However, it requires to have a reference image with its reference segmentation available. Classical methods used to build an average segmentation can lead to over-segmentation in case of high variability among the manual segmentations. We propose in this paper a consensus-based approach to construct a reference segmentation from a database of manually delineated images. We first compute local consensus measures to estimate a variability map, and then deduct from it a consensus segmentation. Finally, the proposed method is evaluated using a dataset of 64 manually delineated images of the head and neck region.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using consensus measures for atlas construction\",\"authors\":\"L. Ramus, G. Malandain\",\"doi\":\"10.1109/ISBI.2009.5193271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atlas-based segmentation has been shown to provide promising results to delineate critical structures for radiotherapy planning. However, it requires to have a reference image with its reference segmentation available. Classical methods used to build an average segmentation can lead to over-segmentation in case of high variability among the manual segmentations. We propose in this paper a consensus-based approach to construct a reference segmentation from a database of manually delineated images. We first compute local consensus measures to estimate a variability map, and then deduct from it a consensus segmentation. Finally, the proposed method is evaluated using a dataset of 64 manually delineated images of the head and neck region.\",\"PeriodicalId\":272938,\"journal\":{\"name\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2009.5193271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于阿特拉斯的分割已被证明为描绘放射治疗计划的关键结构提供了有希望的结果。然而,它需要有一个参考图像,其参考分割可用。在手工分割的高度可变性的情况下,传统的平均分割方法会导致过度分割。本文提出了一种基于共识的方法,从手动描绘的图像数据库中构建参考分割。我们首先计算局部共识度量来估计可变性图,然后从中推导出共识分割。最后,使用64张手动勾画的头颈部区域图像的数据集对所提出的方法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using consensus measures for atlas construction
Atlas-based segmentation has been shown to provide promising results to delineate critical structures for radiotherapy planning. However, it requires to have a reference image with its reference segmentation available. Classical methods used to build an average segmentation can lead to over-segmentation in case of high variability among the manual segmentations. We propose in this paper a consensus-based approach to construct a reference segmentation from a database of manually delineated images. We first compute local consensus measures to estimate a variability map, and then deduct from it a consensus segmentation. Finally, the proposed method is evaluated using a dataset of 64 manually delineated images of the head and neck region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信