基于PCA-LSTM模型的股票价格预测

Xinyuan Zheng, Naiping Xiong
{"title":"基于PCA-LSTM模型的股票价格预测","authors":"Xinyuan Zheng, Naiping Xiong","doi":"10.1145/3545839.3545852","DOIUrl":null,"url":null,"abstract":"In order to improve the prediction accuracy, this study proposes an new PCA-LSTM neural network stock price prediction model that combines principal component analysis(PCA) and long-term and short-term memory neural network (LSTM). We download time series indicators and technical indicators of PingAn insurance (X601318) form Tushare interface and Wind database. PCA method was used to reduce the technical indicators dimension, LSTM model was used to predict the next day stock closing price. The results show that PCA-LSTM model can greatly reduce data redundancy and obtain better prediction accuracy compared with the simple LSTM model. Additional Keywords and Phrases: stock price prediction, PCA, LSTM","PeriodicalId":249161,"journal":{"name":"Proceedings of the 2022 5th International Conference on Mathematics and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stock price prediction based on PCA-LSTM model\",\"authors\":\"Xinyuan Zheng, Naiping Xiong\",\"doi\":\"10.1145/3545839.3545852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the prediction accuracy, this study proposes an new PCA-LSTM neural network stock price prediction model that combines principal component analysis(PCA) and long-term and short-term memory neural network (LSTM). We download time series indicators and technical indicators of PingAn insurance (X601318) form Tushare interface and Wind database. PCA method was used to reduce the technical indicators dimension, LSTM model was used to predict the next day stock closing price. The results show that PCA-LSTM model can greatly reduce data redundancy and obtain better prediction accuracy compared with the simple LSTM model. Additional Keywords and Phrases: stock price prediction, PCA, LSTM\",\"PeriodicalId\":249161,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Mathematics and Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3545839.3545852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545839.3545852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高预测精度,本研究提出了一种结合主成分分析(PCA)和长短期记忆神经网络(LSTM)的PCA-LSTM神经网络股票价格预测模型。我们从图共享接口和风德数据库中下载平安保险(X601318)的时间序列指标和技术指标。采用主成分分析法降维技术指标,采用LSTM模型预测翌日股票收盘价。结果表明,与简单的LSTM模型相比,PCA-LSTM模型可以大大减少数据冗余,获得更好的预测精度。附加关键词:股价预测,PCA, LSTM
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stock price prediction based on PCA-LSTM model
In order to improve the prediction accuracy, this study proposes an new PCA-LSTM neural network stock price prediction model that combines principal component analysis(PCA) and long-term and short-term memory neural network (LSTM). We download time series indicators and technical indicators of PingAn insurance (X601318) form Tushare interface and Wind database. PCA method was used to reduce the technical indicators dimension, LSTM model was used to predict the next day stock closing price. The results show that PCA-LSTM model can greatly reduce data redundancy and obtain better prediction accuracy compared with the simple LSTM model. Additional Keywords and Phrases: stock price prediction, PCA, LSTM
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信