最佳矩形包装为70平方

Brian Laverty, T. Murphy
{"title":"最佳矩形包装为70平方","authors":"Brian Laverty, T. Murphy","doi":"10.2478/rmm-2018-0001","DOIUrl":null,"url":null,"abstract":"Abstract Gardner asked whether it was possible to tile/pack the squares 1×1,…, 24×24 in a 70×70 square. Arguments that it is impossible have been given by Bitner–Reingold and more recently by Korf–Mofitt–Pollack. Here we outline a simpler algorithm, which we hope could be used to give an alternative and more direct proof in the future. We also derive results of independent interest concerning such packings.","PeriodicalId":120489,"journal":{"name":"Recreational Mathematics Magazine","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Rectangle Packing for the 70 Square\",\"authors\":\"Brian Laverty, T. Murphy\",\"doi\":\"10.2478/rmm-2018-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Gardner asked whether it was possible to tile/pack the squares 1×1,…, 24×24 in a 70×70 square. Arguments that it is impossible have been given by Bitner–Reingold and more recently by Korf–Mofitt–Pollack. Here we outline a simpler algorithm, which we hope could be used to give an alternative and more direct proof in the future. We also derive results of independent interest concerning such packings.\",\"PeriodicalId\":120489,\"journal\":{\"name\":\"Recreational Mathematics Magazine\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recreational Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rmm-2018-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recreational Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rmm-2018-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

加德纳问是否有可能在70×70正方形中平铺/包装1×1,…,24×24这些正方形。Bitner-Reingold和最近的Korf-Mofitt-Pollack都提出了不可能的论点。在这里,我们概述了一个更简单的算法,我们希望在未来可以用来提供一个替代的、更直接的证明。我们也得到了关于这种包装的独立的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Rectangle Packing for the 70 Square
Abstract Gardner asked whether it was possible to tile/pack the squares 1×1,…, 24×24 in a 70×70 square. Arguments that it is impossible have been given by Bitner–Reingold and more recently by Korf–Mofitt–Pollack. Here we outline a simpler algorithm, which we hope could be used to give an alternative and more direct proof in the future. We also derive results of independent interest concerning such packings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信