一种集成语音背景模型的鲁棒说话人识别

Douglas A. Reynolds, R. Rose
{"title":"一种集成语音背景模型的鲁棒说话人识别","authors":"Douglas A. Reynolds, R. Rose","doi":"10.1109/ICASSP.1992.226089","DOIUrl":null,"url":null,"abstract":"A procedure for text-independent speaker identification in noisy environments where the interfering background signals cannot be characterized using traditional broadband or impulsive noise models is examined. In the procedure, both the speaker and the background processes are modeled using mixtures of Gaussians. Speaker and background models are integrated into a unified statistical framework allowing the decoupling of the underlying speech process from the noise corrupted observations via the expectation-minimization algorithm. Using this formalism, speaker model parameters are estimated in the presence of the background process, and a scoring procedure is implemented for computing the speaker likelihood in the noise corrupted environment. The performance was evaluated using a 16-speaker conversational speech database with both speech babble and white noise background processes.<<ETX>>","PeriodicalId":163713,"journal":{"name":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An integrated speech-background model for robust speaker identification\",\"authors\":\"Douglas A. Reynolds, R. Rose\",\"doi\":\"10.1109/ICASSP.1992.226089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A procedure for text-independent speaker identification in noisy environments where the interfering background signals cannot be characterized using traditional broadband or impulsive noise models is examined. In the procedure, both the speaker and the background processes are modeled using mixtures of Gaussians. Speaker and background models are integrated into a unified statistical framework allowing the decoupling of the underlying speech process from the noise corrupted observations via the expectation-minimization algorithm. Using this formalism, speaker model parameters are estimated in the presence of the background process, and a scoring procedure is implemented for computing the speaker likelihood in the noise corrupted environment. The performance was evaluated using a 16-speaker conversational speech database with both speech babble and white noise background processes.<<ETX>>\",\"PeriodicalId\":163713,\"journal\":{\"name\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1992.226089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1992.226089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在干扰背景信号无法用传统的宽带或脉冲噪声模型表征的嘈杂环境中,研究了一种与文本无关的说话人识别方法。在这个过程中,演讲者和背景过程都是使用高斯混合模型来建模的。说话人和背景模型被集成到一个统一的统计框架中,允许通过期望最小化算法将潜在的语音过程与噪声损坏的观察结果解耦。利用这种形式,在背景过程存在的情况下对说话人模型参数进行估计,并实现了在噪声破坏环境下计算说话人似然的评分程序。研究人员使用一个16人的会话语音数据库对其性能进行了评估,该数据库包含了咿呀学语和白噪声背景处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An integrated speech-background model for robust speaker identification
A procedure for text-independent speaker identification in noisy environments where the interfering background signals cannot be characterized using traditional broadband or impulsive noise models is examined. In the procedure, both the speaker and the background processes are modeled using mixtures of Gaussians. Speaker and background models are integrated into a unified statistical framework allowing the decoupling of the underlying speech process from the noise corrupted observations via the expectation-minimization algorithm. Using this formalism, speaker model parameters are estimated in the presence of the background process, and a scoring procedure is implemented for computing the speaker likelihood in the noise corrupted environment. The performance was evaluated using a 16-speaker conversational speech database with both speech babble and white noise background processes.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信