通过子字符串枚举进行无损数据压缩

Danny Dubé, V. Beaudoin
{"title":"通过子字符串枚举进行无损数据压缩","authors":"Danny Dubé, V. Beaudoin","doi":"10.1109/DCC.2010.28","DOIUrl":null,"url":null,"abstract":"We present a technique that compresses a string $w$ by enumerating all the substrings of $w$. The substrings are enumerated from the shortest to the longest and in lexicographic order. Compression is obtained from the fact that the set of the substrings of a particular length gives a lot of information about the substrings that are one bit longer. A linear-time, linear-space algorithm is presented. Experimental results show that the compression efficiency comes close to that of the best PPM variants. Other compression techniques are compared to ours.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Lossless Data Compression via Substring Enumeration\",\"authors\":\"Danny Dubé, V. Beaudoin\",\"doi\":\"10.1109/DCC.2010.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a technique that compresses a string $w$ by enumerating all the substrings of $w$. The substrings are enumerated from the shortest to the longest and in lexicographic order. Compression is obtained from the fact that the set of the substrings of a particular length gives a lot of information about the substrings that are one bit longer. A linear-time, linear-space algorithm is presented. Experimental results show that the compression efficiency comes close to that of the best PPM variants. Other compression techniques are compared to ours.\",\"PeriodicalId\":299459,\"journal\":{\"name\":\"2010 Data Compression Conference\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2010.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们提出了一种通过枚举字符串$w$的所有子字符串来压缩字符串$w$的技术。子字符串按字典顺序从最短到最长枚举。压缩是由这样一个事实获得的:特定长度的子字符串集合给出了许多关于比它长1位的子字符串的信息。提出了一种线性时间、线性空间的算法。实验结果表明,压缩效率接近最佳PPM变体。其他压缩技术与我们的进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lossless Data Compression via Substring Enumeration
We present a technique that compresses a string $w$ by enumerating all the substrings of $w$. The substrings are enumerated from the shortest to the longest and in lexicographic order. Compression is obtained from the fact that the set of the substrings of a particular length gives a lot of information about the substrings that are one bit longer. A linear-time, linear-space algorithm is presented. Experimental results show that the compression efficiency comes close to that of the best PPM variants. Other compression techniques are compared to ours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信