使用反应基序的酶分类

Thanapat Kangkachit, Kitsana Waiyamai, P. Lenca
{"title":"使用反应基序的酶分类","authors":"Thanapat Kangkachit, Kitsana Waiyamai, P. Lenca","doi":"10.1504/IJFIPM.2014.068173","DOIUrl":null,"url":null,"abstract":"Reactive motifs are short conserved sub–sequences discovered from functional sites of enzyme sequences, and can be used as an effective representation of enzyme sequences. However, the lack of site information leads to low–coverage reactive motifs. With the use of background knowledge, a motif generalisation method is required to increase reactive motifs' coverage. We show that a fuzzy concept lattice (FCL) provides an efficient representation of both single–value and multi–value biological background knowledge and an efficient computational support for generalising reactive motifs. Compared to statistical and expert–based motifs, we show that the generalised reactive motifs using FCL with SVM classifier produce satisfactory accuracy in classifying new enzymes. Further, they improve interpretability of the classification results and provide more biological evidences to biologists. All of the generalised reactive motifs are relevant to the functional sites, and the way they are combined to perform protein function is useful for numerous applications in bioinformatics.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enzyme classification using reactive motifs\",\"authors\":\"Thanapat Kangkachit, Kitsana Waiyamai, P. Lenca\",\"doi\":\"10.1504/IJFIPM.2014.068173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactive motifs are short conserved sub–sequences discovered from functional sites of enzyme sequences, and can be used as an effective representation of enzyme sequences. However, the lack of site information leads to low–coverage reactive motifs. With the use of background knowledge, a motif generalisation method is required to increase reactive motifs' coverage. We show that a fuzzy concept lattice (FCL) provides an efficient representation of both single–value and multi–value biological background knowledge and an efficient computational support for generalising reactive motifs. Compared to statistical and expert–based motifs, we show that the generalised reactive motifs using FCL with SVM classifier produce satisfactory accuracy in classifying new enzymes. Further, they improve interpretability of the classification results and provide more biological evidences to biologists. All of the generalised reactive motifs are relevant to the functional sites, and the way they are combined to perform protein function is useful for numerous applications in bioinformatics.\",\"PeriodicalId\":216126,\"journal\":{\"name\":\"Int. J. Funct. Informatics Pers. Medicine\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Funct. Informatics Pers. Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJFIPM.2014.068173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2014.068173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

活性基序是从酶序列的功能位点发现的短的保守亚序列,可以作为酶序列的有效表征。然而,缺乏网站信息导致低覆盖率的反应性主题。利用背景知识,需要一种基序泛化方法来增加反应基序的覆盖率。我们证明了模糊概念格(FCL)提供了单值和多值生物背景知识的有效表示,并为泛化反应基序提供了有效的计算支持。通过与统计基序和专家基序的比较,我们发现使用FCL和SVM分类器的广义反应基序在分类新酶方面具有令人满意的准确性。进一步提高了分类结果的可解释性,为生物学家提供了更多的生物学证据。所有的广义反应基序都与功能位点相关,它们结合起来执行蛋白质功能的方式对生物信息学中的许多应用都是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enzyme classification using reactive motifs
Reactive motifs are short conserved sub–sequences discovered from functional sites of enzyme sequences, and can be used as an effective representation of enzyme sequences. However, the lack of site information leads to low–coverage reactive motifs. With the use of background knowledge, a motif generalisation method is required to increase reactive motifs' coverage. We show that a fuzzy concept lattice (FCL) provides an efficient representation of both single–value and multi–value biological background knowledge and an efficient computational support for generalising reactive motifs. Compared to statistical and expert–based motifs, we show that the generalised reactive motifs using FCL with SVM classifier produce satisfactory accuracy in classifying new enzymes. Further, they improve interpretability of the classification results and provide more biological evidences to biologists. All of the generalised reactive motifs are relevant to the functional sites, and the way they are combined to perform protein function is useful for numerous applications in bioinformatics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信