Parikh Automata over Infinite Words

Shibashis Guha, Ismaël Jecker, K. Lehtinen, Martin Zimmermann
{"title":"Parikh Automata over Infinite Words","authors":"Shibashis Guha, Ismaël Jecker, K. Lehtinen, Martin Zimmermann","doi":"10.48550/arXiv.2207.07694","DOIUrl":null,"url":null,"abstract":"Parikh automata extend finite automata by counters that can be tested for membership in a semilinear set, but only at the end of a run, thereby preserving many of the desirable algorithmic properties of finite automata. Here, we study the extension of the classical framework onto infinite inputs: We introduce reachability, safety, B\\\"uchi, and co-B\\\"uchi Parikh automata on infinite words and study expressiveness, closure properties, and the complexity of verification problems. We show that almost all classes of automata have pairwise incomparable expressiveness, both in the deterministic and the nondeterministic case; a result that sharply contrasts with the well-known hierarchy in the $\\omega$-regular setting. Furthermore, emptiness is shown decidable for Parikh automata with reachability or B\\\"uchi acceptance, but undecidable for safety and co-B\\\"uchi acceptance. Most importantly, we show decidability of model checking with specifications given by deterministic Parikh automata with safety or co-B\\\"uchi acceptance, but also undecidability for all other types of automata. Finally, solving games is undecidable for all types.","PeriodicalId":175000,"journal":{"name":"Foundations of Software Technology and Theoretical Computer Science","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Parikh Automata over Infinite Words\",\"authors\":\"Shibashis Guha, Ismaël Jecker, K. Lehtinen, Martin Zimmermann\",\"doi\":\"10.48550/arXiv.2207.07694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parikh automata extend finite automata by counters that can be tested for membership in a semilinear set, but only at the end of a run, thereby preserving many of the desirable algorithmic properties of finite automata. Here, we study the extension of the classical framework onto infinite inputs: We introduce reachability, safety, B\\\\\\\"uchi, and co-B\\\\\\\"uchi Parikh automata on infinite words and study expressiveness, closure properties, and the complexity of verification problems. We show that almost all classes of automata have pairwise incomparable expressiveness, both in the deterministic and the nondeterministic case; a result that sharply contrasts with the well-known hierarchy in the $\\\\omega$-regular setting. Furthermore, emptiness is shown decidable for Parikh automata with reachability or B\\\\\\\"uchi acceptance, but undecidable for safety and co-B\\\\\\\"uchi acceptance. Most importantly, we show decidability of model checking with specifications given by deterministic Parikh automata with safety or co-B\\\\\\\"uchi acceptance, but also undecidability for all other types of automata. Finally, solving games is undecidable for all types.\",\"PeriodicalId\":175000,\"journal\":{\"name\":\"Foundations of Software Technology and Theoretical Computer Science\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Software Technology and Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.07694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Software Technology and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.07694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Parikh自动机通过计数器扩展有限自动机,这些计数器可以在半线性集合中测试隶属性,但只能在运行结束时进行测试,从而保留了有限自动机的许多理想算法性质。在这里,我们研究了经典框架在无限输入上的扩展:我们在无限单词上引入可达性、安全性、B\ uchi和协B\ uchi Parikh自动机,并研究了表达性、闭包性质和验证问题的复杂性。我们证明了几乎所有自动机类在确定性和非确定性情况下都具有两两不可比较的表达性;这一结果与众所周知的$\omega$-regular设置中的层次结构形成鲜明对比。此外,空性对于具有可达性或可接受性的Parikh自动机是可确定的,但对于安全性和共可接受性是不可确定的。最重要的是,我们证明了确定性Parikh自动机给出的具有安全或co-B - uchi接受的规范的模型检查的可判定性,以及所有其他类型自动机的不可判定性。最后,解决游戏对于所有类型来说都是不可确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parikh Automata over Infinite Words
Parikh automata extend finite automata by counters that can be tested for membership in a semilinear set, but only at the end of a run, thereby preserving many of the desirable algorithmic properties of finite automata. Here, we study the extension of the classical framework onto infinite inputs: We introduce reachability, safety, B\"uchi, and co-B\"uchi Parikh automata on infinite words and study expressiveness, closure properties, and the complexity of verification problems. We show that almost all classes of automata have pairwise incomparable expressiveness, both in the deterministic and the nondeterministic case; a result that sharply contrasts with the well-known hierarchy in the $\omega$-regular setting. Furthermore, emptiness is shown decidable for Parikh automata with reachability or B\"uchi acceptance, but undecidable for safety and co-B\"uchi acceptance. Most importantly, we show decidability of model checking with specifications given by deterministic Parikh automata with safety or co-B\"uchi acceptance, but also undecidability for all other types of automata. Finally, solving games is undecidable for all types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信