无惯性单机微电网PMSG风力发电系统变流器控制

J. Yoo, Jaewoo Kim, Jung-Wook Park
{"title":"无惯性单机微电网PMSG风力发电系统变流器控制","authors":"J. Yoo, Jaewoo Kim, Jung-Wook Park","doi":"10.1109/IAS.2016.7731830","DOIUrl":null,"url":null,"abstract":"This paper proposes the new converter control of the permanent magnet synchronous generator (PMSG) wind turbine system in the inertia-free stand-alone (IFSA) microgrid with the only converter-based-generators (CBGs). Instead of applying the conventional real and reactive power controller, the more robust controller is required in the IFSA microgrid because it is subject to a weak system such that its frequency is determined by the switching control of CBGs. The proposed controller has the grid-side converter, which controls to keep the voltage magnitude and phase angle of the point of common coupling (PCC) in a stable mode. It balances the real power between output power of wind turbine system and the load demand. Also, the machine-side converter controls rotor speed and pitch angle, which proposed to balance the active power flow, thus maintaining the converter DC-link voltage. The electromagnetic transients program (EMTP) based simulation results are given to verify the effectiveness of proposed controller in the IFSA microgrid. Also, its effectiveness is verified with the experimental test by the real-time digital simulator (RTDS).","PeriodicalId":306377,"journal":{"name":"2016 IEEE Industry Applications Society Annual Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Converter control of PMSG wind turbine system for inertia-free stand-alone microgrid\",\"authors\":\"J. Yoo, Jaewoo Kim, Jung-Wook Park\",\"doi\":\"10.1109/IAS.2016.7731830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the new converter control of the permanent magnet synchronous generator (PMSG) wind turbine system in the inertia-free stand-alone (IFSA) microgrid with the only converter-based-generators (CBGs). Instead of applying the conventional real and reactive power controller, the more robust controller is required in the IFSA microgrid because it is subject to a weak system such that its frequency is determined by the switching control of CBGs. The proposed controller has the grid-side converter, which controls to keep the voltage magnitude and phase angle of the point of common coupling (PCC) in a stable mode. It balances the real power between output power of wind turbine system and the load demand. Also, the machine-side converter controls rotor speed and pitch angle, which proposed to balance the active power flow, thus maintaining the converter DC-link voltage. The electromagnetic transients program (EMTP) based simulation results are given to verify the effectiveness of proposed controller in the IFSA microgrid. Also, its effectiveness is verified with the experimental test by the real-time digital simulator (RTDS).\",\"PeriodicalId\":306377,\"journal\":{\"name\":\"2016 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2016.7731830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2016.7731830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了在无惯性单机(IFSA)微电网中,只有变流器发电机(CBGs)的永磁同步发电机(PMSG)风力发电系统的新型变流器控制方法。IFSA微电网不采用传统的实功率和无功功率控制器,而是需要更鲁棒的控制器,因为它受制于一个弱系统,其频率由cbg的开关控制决定。该控制器采用电网侧变换器控制,使共耦合点(PCC)的电压幅值和相位角保持稳定模式。它平衡了风力发电系统输出功率与负荷需求之间的实际功率。机侧变流器通过控制转子转速和俯仰角来平衡有功潮流,从而维持变流器直流电压。基于电磁瞬变程序(EMTP)的仿真结果验证了该控制器在IFSA微电网中的有效性。通过实时数字模拟器(RTDS)的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Converter control of PMSG wind turbine system for inertia-free stand-alone microgrid
This paper proposes the new converter control of the permanent magnet synchronous generator (PMSG) wind turbine system in the inertia-free stand-alone (IFSA) microgrid with the only converter-based-generators (CBGs). Instead of applying the conventional real and reactive power controller, the more robust controller is required in the IFSA microgrid because it is subject to a weak system such that its frequency is determined by the switching control of CBGs. The proposed controller has the grid-side converter, which controls to keep the voltage magnitude and phase angle of the point of common coupling (PCC) in a stable mode. It balances the real power between output power of wind turbine system and the load demand. Also, the machine-side converter controls rotor speed and pitch angle, which proposed to balance the active power flow, thus maintaining the converter DC-link voltage. The electromagnetic transients program (EMTP) based simulation results are given to verify the effectiveness of proposed controller in the IFSA microgrid. Also, its effectiveness is verified with the experimental test by the real-time digital simulator (RTDS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信