{"title":"可组合输送系统的混合输入输出自动机","authors":"S. Mitra, Shivakumar Sastry","doi":"10.1109/COASE.2009.5234093","DOIUrl":null,"url":null,"abstract":"We present Hybrid Input/Output Automata (HIOA) models as a basis for the design and analysis of a class of composable conveyor systems. These conveyor systems are realized by composing instances of two kinds of units, namely segments and turns. A microcontroller, which is physically wired to the sensors and actuators on the unit, regulates the local operations at the unit level. Microcontrollers that regulate physically adjacent units interact with each other over wireless links.","PeriodicalId":386046,"journal":{"name":"2009 IEEE International Conference on Automation Science and Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Input Output Automata for composable conveyor systems\",\"authors\":\"S. Mitra, Shivakumar Sastry\",\"doi\":\"10.1109/COASE.2009.5234093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Hybrid Input/Output Automata (HIOA) models as a basis for the design and analysis of a class of composable conveyor systems. These conveyor systems are realized by composing instances of two kinds of units, namely segments and turns. A microcontroller, which is physically wired to the sensors and actuators on the unit, regulates the local operations at the unit level. Microcontrollers that regulate physically adjacent units interact with each other over wireless links.\",\"PeriodicalId\":386046,\"journal\":{\"name\":\"2009 IEEE International Conference on Automation Science and Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Automation Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2009.5234093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2009.5234093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid Input Output Automata for composable conveyor systems
We present Hybrid Input/Output Automata (HIOA) models as a basis for the design and analysis of a class of composable conveyor systems. These conveyor systems are realized by composing instances of two kinds of units, namely segments and turns. A microcontroller, which is physically wired to the sensors and actuators on the unit, regulates the local operations at the unit level. Microcontrollers that regulate physically adjacent units interact with each other over wireless links.