{"title":"移动设备上差分渲染的平铺截锥体剔除","authors":"K. Rohmer, Thorsten Grosch","doi":"10.1109/ISMAR.2015.13","DOIUrl":null,"url":null,"abstract":"Mobile devices are part of our everyday life and allow augmented reality (AR) with their integrated camera image. Recent research has shown that even photorealistic augmentations with consistent illumination are possible. A method, achieving this first, distributed lighting computations and the extraction of the important light sources. To reach real-time frame rates on a mobile device, the number of these extracted light sources must be low, limiting the scope of possible illumination scenarios and the quality of shadows. In this paper, we show how to reduce the computational cost per light using a combination of tile-based rendering and frustum culling techniques tailored for AR applications. Our approach runs entirely on the GPU and does not require any precomputation. Without reducing the displayed image quality, we achieve up to 2.2× speedup for typical AR scenarios.","PeriodicalId":240196,"journal":{"name":"2015 IEEE International Symposium on Mixed and Augmented Reality","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tiled Frustum Culling for Differential Rendering on Mobile Devices\",\"authors\":\"K. Rohmer, Thorsten Grosch\",\"doi\":\"10.1109/ISMAR.2015.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile devices are part of our everyday life and allow augmented reality (AR) with their integrated camera image. Recent research has shown that even photorealistic augmentations with consistent illumination are possible. A method, achieving this first, distributed lighting computations and the extraction of the important light sources. To reach real-time frame rates on a mobile device, the number of these extracted light sources must be low, limiting the scope of possible illumination scenarios and the quality of shadows. In this paper, we show how to reduce the computational cost per light using a combination of tile-based rendering and frustum culling techniques tailored for AR applications. Our approach runs entirely on the GPU and does not require any precomputation. Without reducing the displayed image quality, we achieve up to 2.2× speedup for typical AR scenarios.\",\"PeriodicalId\":240196,\"journal\":{\"name\":\"2015 IEEE International Symposium on Mixed and Augmented Reality\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Mixed and Augmented Reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR.2015.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Mixed and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2015.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tiled Frustum Culling for Differential Rendering on Mobile Devices
Mobile devices are part of our everyday life and allow augmented reality (AR) with their integrated camera image. Recent research has shown that even photorealistic augmentations with consistent illumination are possible. A method, achieving this first, distributed lighting computations and the extraction of the important light sources. To reach real-time frame rates on a mobile device, the number of these extracted light sources must be low, limiting the scope of possible illumination scenarios and the quality of shadows. In this paper, we show how to reduce the computational cost per light using a combination of tile-based rendering and frustum culling techniques tailored for AR applications. Our approach runs entirely on the GPU and does not require any precomputation. Without reducing the displayed image quality, we achieve up to 2.2× speedup for typical AR scenarios.