{"title":"分布式储能嵌入网络损耗的P2P能源交易","authors":"V. Saini, Rajesh Kumar, A. Al‐Sumaiti","doi":"10.1109/PEDES56012.2022.10080366","DOIUrl":null,"url":null,"abstract":"The deployment of distributed energy sources (DES), has transformed ordinary consumers into active par-ticipants in the local energy market (LEM). Digitalization of distribution system and Peer-to-peer (P2P) energy trading is a new paradigm introduced by this development. However, the design of policy and guidelines for trading of energy in LEM is still in its infancy. This research offers a P2P energy trading model for residential community in response to the growing complexity of the market structure and decision-making techniques. In order to do this, a mathematical model is offered, together with the guidelines for purchasing and selling energy. This study uses the historical demand, PV generation and price profiles of the Indian residential community to suggest a trading platform with PV power penetration of 56.57% of the average demand. Five scenarios are compared to the baseline scenario (neither PV nor storage) for P2P trading and energy storage flexibility. Results have demonstrated that the interaction between storage and P2P trading has reduced the community's grid power consumption bills by 67.12%.","PeriodicalId":161541,"journal":{"name":"2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"P2P Energy Trading With Decentralized Energy Storage Embedded Network Loss\",\"authors\":\"V. Saini, Rajesh Kumar, A. Al‐Sumaiti\",\"doi\":\"10.1109/PEDES56012.2022.10080366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deployment of distributed energy sources (DES), has transformed ordinary consumers into active par-ticipants in the local energy market (LEM). Digitalization of distribution system and Peer-to-peer (P2P) energy trading is a new paradigm introduced by this development. However, the design of policy and guidelines for trading of energy in LEM is still in its infancy. This research offers a P2P energy trading model for residential community in response to the growing complexity of the market structure and decision-making techniques. In order to do this, a mathematical model is offered, together with the guidelines for purchasing and selling energy. This study uses the historical demand, PV generation and price profiles of the Indian residential community to suggest a trading platform with PV power penetration of 56.57% of the average demand. Five scenarios are compared to the baseline scenario (neither PV nor storage) for P2P trading and energy storage flexibility. Results have demonstrated that the interaction between storage and P2P trading has reduced the community's grid power consumption bills by 67.12%.\",\"PeriodicalId\":161541,\"journal\":{\"name\":\"2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDES56012.2022.10080366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDES56012.2022.10080366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
P2P Energy Trading With Decentralized Energy Storage Embedded Network Loss
The deployment of distributed energy sources (DES), has transformed ordinary consumers into active par-ticipants in the local energy market (LEM). Digitalization of distribution system and Peer-to-peer (P2P) energy trading is a new paradigm introduced by this development. However, the design of policy and guidelines for trading of energy in LEM is still in its infancy. This research offers a P2P energy trading model for residential community in response to the growing complexity of the market structure and decision-making techniques. In order to do this, a mathematical model is offered, together with the guidelines for purchasing and selling energy. This study uses the historical demand, PV generation and price profiles of the Indian residential community to suggest a trading platform with PV power penetration of 56.57% of the average demand. Five scenarios are compared to the baseline scenario (neither PV nor storage) for P2P trading and energy storage flexibility. Results have demonstrated that the interaction between storage and P2P trading has reduced the community's grid power consumption bills by 67.12%.