基于符号位误差值集中的高效图像压缩

Shu-Mei Guo, Chih-Yuan Hsu, J. Tsai
{"title":"基于符号位误差值集中的高效图像压缩","authors":"Shu-Mei Guo, Chih-Yuan Hsu, J. Tsai","doi":"10.1109/TENCON.2013.6718950","DOIUrl":null,"url":null,"abstract":"In the last two decades, there exist many high-performance prediction-based methods that use different coefficients of causal neighbors in order to exploit the relationship of spatial energy to produce a less error image. Besides, more and more researches focus on the accuracy of predictor; nevertheless, the predictor spends a lot of time on finding the best coefficients of causal neighbors. The objective of our research is to propose an efficient and implementable method to improve compression ratio, without increasing extra computation complexity. Here, we present an improved lossless image compression based on the prediction method, by the proposed application of efficient error value centralization by sign bits. The contribution of this paper is to centralize error values in a novel way to improves coding performance. Experimental results show that our proposed method achieves higher compression ratio than the context-based, adaptive, and lossless image codec (CALIC) method for the images with many details or slightly regular texture.","PeriodicalId":425023,"journal":{"name":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient image compression based on error value centralization by sign bits\",\"authors\":\"Shu-Mei Guo, Chih-Yuan Hsu, J. Tsai\",\"doi\":\"10.1109/TENCON.2013.6718950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last two decades, there exist many high-performance prediction-based methods that use different coefficients of causal neighbors in order to exploit the relationship of spatial energy to produce a less error image. Besides, more and more researches focus on the accuracy of predictor; nevertheless, the predictor spends a lot of time on finding the best coefficients of causal neighbors. The objective of our research is to propose an efficient and implementable method to improve compression ratio, without increasing extra computation complexity. Here, we present an improved lossless image compression based on the prediction method, by the proposed application of efficient error value centralization by sign bits. The contribution of this paper is to centralize error values in a novel way to improves coding performance. Experimental results show that our proposed method achieves higher compression ratio than the context-based, adaptive, and lossless image codec (CALIC) method for the images with many details or slightly regular texture.\",\"PeriodicalId\":425023,\"journal\":{\"name\":\"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2013.6718950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2013.6718950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近二十年来,为了利用空间能量的关系产生误差较小的图像,出现了许多高性能的基于预测的方法,这些方法使用不同的因果邻域系数。此外,越来越多的研究关注预测器的准确性;尽管如此,预测器还是要花很多时间来寻找因果邻邦的最佳系数。我们的研究目标是在不增加额外计算复杂度的情况下,提出一种有效且可实现的方法来提高压缩比。在这里,我们提出了一种改进的无损图像压缩基于预测方法,提出了有效的误差值集中化的符号位。本文的贡献在于以一种新颖的方式集中了错误值,从而提高了编码性能。实验结果表明,对于具有较多细节或略规则纹理的图像,该方法比基于上下文的自适应无损图像编解码器(CALIC)方法获得了更高的压缩比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient image compression based on error value centralization by sign bits
In the last two decades, there exist many high-performance prediction-based methods that use different coefficients of causal neighbors in order to exploit the relationship of spatial energy to produce a less error image. Besides, more and more researches focus on the accuracy of predictor; nevertheless, the predictor spends a lot of time on finding the best coefficients of causal neighbors. The objective of our research is to propose an efficient and implementable method to improve compression ratio, without increasing extra computation complexity. Here, we present an improved lossless image compression based on the prediction method, by the proposed application of efficient error value centralization by sign bits. The contribution of this paper is to centralize error values in a novel way to improves coding performance. Experimental results show that our proposed method achieves higher compression ratio than the context-based, adaptive, and lossless image codec (CALIC) method for the images with many details or slightly regular texture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信