分布式存储中具有符号局部性和组可解码性的擦除码

Wentu Song, Son Hoang Dau, C. Yuen
{"title":"分布式存储中具有符号局部性和组可解码性的擦除码","authors":"Wentu Song, Son Hoang Dau, C. Yuen","doi":"10.1109/ITWF.2015.7360737","DOIUrl":null,"url":null,"abstract":"We introduce a new family of erasure codes, called group decodable code (GDC), for distributed storage system. Given a set of design parameters {α, β, k, t}, where k is the number of information symbols, each codeword of an (α, β, k, t)- group decodable code is a t-tuple of strings, called buckets, such that each bucket is a string of β symbols that is a codeword of a [β, α] MDS code (which is encoded from α information symbols). Such codes have the following two properties: (P1) Locally Repairable: Each code symbol has locality (α, β - α + 1). (P2) Group decodable: From each bucket we can decode α information symbols. We establish an upper bound of the minimum distance of (α, β, k, t)-group decodable code for any given set of {α, β, k, t}; We also prove that the bound is achievable when the coding field F has size |F| > (<sup>n-1</sup><sub>k-1</sub> ).","PeriodicalId":281890,"journal":{"name":"2015 IEEE Information Theory Workshop - Fall (ITW)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Erasure codes with symbol locality and group decodability for distributed storage\",\"authors\":\"Wentu Song, Son Hoang Dau, C. Yuen\",\"doi\":\"10.1109/ITWF.2015.7360737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new family of erasure codes, called group decodable code (GDC), for distributed storage system. Given a set of design parameters {α, β, k, t}, where k is the number of information symbols, each codeword of an (α, β, k, t)- group decodable code is a t-tuple of strings, called buckets, such that each bucket is a string of β symbols that is a codeword of a [β, α] MDS code (which is encoded from α information symbols). Such codes have the following two properties: (P1) Locally Repairable: Each code symbol has locality (α, β - α + 1). (P2) Group decodable: From each bucket we can decode α information symbols. We establish an upper bound of the minimum distance of (α, β, k, t)-group decodable code for any given set of {α, β, k, t}; We also prove that the bound is achievable when the coding field F has size |F| > (<sup>n-1</sup><sub>k-1</sub> ).\",\"PeriodicalId\":281890,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop - Fall (ITW)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop - Fall (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITWF.2015.7360737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop - Fall (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITWF.2015.7360737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对分布式存储系统,提出了一种新的擦除码,称为组可解码码(GDC)。给定一组设计参数{α, β, k, t},其中k是信息符号的个数,(α, β, k, t)组可解码码的每个码字是字符串的t元组,称为桶,这样每个桶是一串β符号,是一个[β, α] MDS码(由α信息符号编码)的码字。这样的码具有以下两个性质:(P1)局部可修复:每个码符号具有局部性(α, β - α + 1)。(P2)组可解码:从每个桶中我们可以解码α信息符号。对于任意给定的{α, β, k, t}集,我们建立了(α, β, k, t)群可解码码的最小距离的上界;我们还证明了当编码域F的大小为|F| > (n-1k-1)时,该界是可以实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Erasure codes with symbol locality and group decodability for distributed storage
We introduce a new family of erasure codes, called group decodable code (GDC), for distributed storage system. Given a set of design parameters {α, β, k, t}, where k is the number of information symbols, each codeword of an (α, β, k, t)- group decodable code is a t-tuple of strings, called buckets, such that each bucket is a string of β symbols that is a codeword of a [β, α] MDS code (which is encoded from α information symbols). Such codes have the following two properties: (P1) Locally Repairable: Each code symbol has locality (α, β - α + 1). (P2) Group decodable: From each bucket we can decode α information symbols. We establish an upper bound of the minimum distance of (α, β, k, t)-group decodable code for any given set of {α, β, k, t}; We also prove that the bound is achievable when the coding field F has size |F| > (n-1k-1 ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信