16.3 A 330mW 14b 6.8GS/s双模RF DAC,采用16nm FinFET,在5.2GHz的20MHz通道中实现- 70.8dBc的ACPR

C. Erdmann, Edward Cullen, D. Brouard, R. Pelliconi, B. Verbruggen, John McGrath, Diarmuid Collins, M. D. L. Torre, Pierrick Gay, Patrick Lynch, P. Lim, A. Collins, B. Farley
{"title":"16.3 A 330mW 14b 6.8GS/s双模RF DAC,采用16nm FinFET,在5.2GHz的20MHz通道中实现- 70.8dBc的ACPR","authors":"C. Erdmann, Edward Cullen, D. Brouard, R. Pelliconi, B. Verbruggen, John McGrath, Diarmuid Collins, M. D. L. Torre, Pierrick Gay, Patrick Lynch, P. Lim, A. Collins, B. Farley","doi":"10.1109/ISSCC.2017.7870370","DOIUrl":null,"url":null,"abstract":"Direct-RF synthesis has gained increasing attention in recent years [1] [2] as it simplifies the transmitter system by eliminating the intermediate frequency stage. It also offers the opportunity to address the extensive range of cellular bands with the same architecture and building blocks. Direct synthesis of carriers in the 5 to 6GHz unlicenced bands remains a challenge for RF-DACs operating in the 1st Nyquist band, as sampling rates in excess of 12GS/s are required. A more power efficient way to synthesize directly these frequencies is to use wideband mixing-DACs, which increase the output power in the 2nd and 3rd Nyquist bands [3]. In [3] the mixing is done using the quad-switch configuration, which doubles the number of switches and drivers, directly impacting the overall DAC width. In [4] the mixer is inserted in-line between the current cell switch and the output cascode, which requires additional headroom in the output stage. Both implementations impact the overall performance and power of the DAC even when the mixing operation is not used.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"16.3 A 330mW 14b 6.8GS/s dual-mode RF DAC in 16nm FinFET achieving −70.8dBc ACPR in a 20MHz channel at 5.2GHz\",\"authors\":\"C. Erdmann, Edward Cullen, D. Brouard, R. Pelliconi, B. Verbruggen, John McGrath, Diarmuid Collins, M. D. L. Torre, Pierrick Gay, Patrick Lynch, P. Lim, A. Collins, B. Farley\",\"doi\":\"10.1109/ISSCC.2017.7870370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct-RF synthesis has gained increasing attention in recent years [1] [2] as it simplifies the transmitter system by eliminating the intermediate frequency stage. It also offers the opportunity to address the extensive range of cellular bands with the same architecture and building blocks. Direct synthesis of carriers in the 5 to 6GHz unlicenced bands remains a challenge for RF-DACs operating in the 1st Nyquist band, as sampling rates in excess of 12GS/s are required. A more power efficient way to synthesize directly these frequencies is to use wideband mixing-DACs, which increase the output power in the 2nd and 3rd Nyquist bands [3]. In [3] the mixing is done using the quad-switch configuration, which doubles the number of switches and drivers, directly impacting the overall DAC width. In [4] the mixer is inserted in-line between the current cell switch and the output cascode, which requires additional headroom in the output stage. Both implementations impact the overall performance and power of the DAC even when the mixing operation is not used.\",\"PeriodicalId\":269679,\"journal\":{\"name\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2017.7870370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

直接射频合成近年来受到越来越多的关注[1][2],因为它通过消除中频级简化了发射机系统。它还提供了使用相同的架构和构建块来处理广泛的蜂窝频段的机会。在5到6GHz频段直接合成载波对于在第1奈奎斯特频段工作的rf - dac来说仍然是一个挑战,因为需要超过12GS/s的采样率。直接合成这些频率的一种更节能的方法是使用宽带混合dac,它可以增加第2和第3奈奎斯特频段的输出功率[3]。在[3]中,混合是使用四开关配置完成的,这使开关和驱动器的数量增加了一倍,直接影响整个DAC宽度。在[4]中,混频器插入在电流单元开关和输出级联码之间,这需要在输出级增加额外的净空空间。即使在不使用混合操作的情况下,这两种实现都会影响DAC的整体性能和功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
16.3 A 330mW 14b 6.8GS/s dual-mode RF DAC in 16nm FinFET achieving −70.8dBc ACPR in a 20MHz channel at 5.2GHz
Direct-RF synthesis has gained increasing attention in recent years [1] [2] as it simplifies the transmitter system by eliminating the intermediate frequency stage. It also offers the opportunity to address the extensive range of cellular bands with the same architecture and building blocks. Direct synthesis of carriers in the 5 to 6GHz unlicenced bands remains a challenge for RF-DACs operating in the 1st Nyquist band, as sampling rates in excess of 12GS/s are required. A more power efficient way to synthesize directly these frequencies is to use wideband mixing-DACs, which increase the output power in the 2nd and 3rd Nyquist bands [3]. In [3] the mixing is done using the quad-switch configuration, which doubles the number of switches and drivers, directly impacting the overall DAC width. In [4] the mixer is inserted in-line between the current cell switch and the output cascode, which requires additional headroom in the output stage. Both implementations impact the overall performance and power of the DAC even when the mixing operation is not used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信