使用主成分分析变体的图像表示:比较研究

Abubakar Siddique, Isma Hamid, Weisheng Li, Qamar Nawaz, S. M. Gilani
{"title":"使用主成分分析变体的图像表示:比较研究","authors":"Abubakar Siddique, Isma Hamid, Weisheng Li, Qamar Nawaz, S. M. Gilani","doi":"10.1109/ICCSN.2019.8905294","DOIUrl":null,"url":null,"abstract":"Linear and non-linear data reduction techniques proved their effectiveness in the field of image analysis. Principal Component Analysis (PCA) is a powerful data reduction and data representation technique having its linear and non-linear counterparts. It is a statistical technique used to transform high dimensional data into low dimensional representation without losing much of the information. PCA is a widely-used algorithm in the field of pattern recognition, face recognition, image fusion, data compression, and machine vision. Over the period, many PCA based algorithms have been proposed to effectively extract important features from images and to reconstruct images using minimum feature set. In this paper, we compared four widely used PCA based algorithms in terms of their capability of representing images using reduced feature set.","PeriodicalId":330766,"journal":{"name":"2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Representation Using Variants of Principal Component Analysis: A Comparative Study\",\"authors\":\"Abubakar Siddique, Isma Hamid, Weisheng Li, Qamar Nawaz, S. M. Gilani\",\"doi\":\"10.1109/ICCSN.2019.8905294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear and non-linear data reduction techniques proved their effectiveness in the field of image analysis. Principal Component Analysis (PCA) is a powerful data reduction and data representation technique having its linear and non-linear counterparts. It is a statistical technique used to transform high dimensional data into low dimensional representation without losing much of the information. PCA is a widely-used algorithm in the field of pattern recognition, face recognition, image fusion, data compression, and machine vision. Over the period, many PCA based algorithms have been proposed to effectively extract important features from images and to reconstruct images using minimum feature set. In this paper, we compared four widely used PCA based algorithms in terms of their capability of representing images using reduced feature set.\",\"PeriodicalId\":330766,\"journal\":{\"name\":\"2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSN.2019.8905294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSN.2019.8905294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

线性和非线性数据约简技术在图像分析领域证明了它们的有效性。主成分分析(PCA)是一种强大的数据约简和数据表示技术,具有线性和非线性的对应技术。它是一种统计技术,用于将高维数据转换为低维表示而不会丢失大量信息。PCA是一种广泛应用于模式识别、人脸识别、图像融合、数据压缩和机器视觉等领域的算法。在此期间,人们提出了许多基于PCA的算法来有效地从图像中提取重要特征并使用最小特征集重建图像。在本文中,我们比较了四种广泛使用的基于PCA的算法使用约简特征集表示图像的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Representation Using Variants of Principal Component Analysis: A Comparative Study
Linear and non-linear data reduction techniques proved their effectiveness in the field of image analysis. Principal Component Analysis (PCA) is a powerful data reduction and data representation technique having its linear and non-linear counterparts. It is a statistical technique used to transform high dimensional data into low dimensional representation without losing much of the information. PCA is a widely-used algorithm in the field of pattern recognition, face recognition, image fusion, data compression, and machine vision. Over the period, many PCA based algorithms have been proposed to effectively extract important features from images and to reconstruct images using minimum feature set. In this paper, we compared four widely used PCA based algorithms in terms of their capability of representing images using reduced feature set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信