线性混合信号盲源分离的RBF神经网络算法

Y. Lin, Tusheng Lin
{"title":"线性混合信号盲源分离的RBF神经网络算法","authors":"Y. Lin, Tusheng Lin","doi":"10.1109/ISDA.2006.5","DOIUrl":null,"url":null,"abstract":"This paper presents a radial basis function (RBF) neural network approach to blind source separation in linear mixture. After calculating center value vector and width value vector, weight value vector that is deduced by maximizing entropy (ME) of cost function is calculated in this RBF neural network. This cost function results in the independence of the outputs with desirable moments such that the original sources are separated properly. Simulation results show that the separation time is reduced and the separation effect is very good. Compared with ME of algorithm, the effect of this algorithm is better.","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A RBF Neural Network Algorithm for Blind Source Separation of Linear Mixing Signals\",\"authors\":\"Y. Lin, Tusheng Lin\",\"doi\":\"10.1109/ISDA.2006.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a radial basis function (RBF) neural network approach to blind source separation in linear mixture. After calculating center value vector and width value vector, weight value vector that is deduced by maximizing entropy (ME) of cost function is calculated in this RBF neural network. This cost function results in the independence of the outputs with desirable moments such that the original sources are separated properly. Simulation results show that the separation time is reduced and the separation effect is very good. Compared with ME of algorithm, the effect of this algorithm is better.\",\"PeriodicalId\":116729,\"journal\":{\"name\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2006.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于径向基函数(RBF)神经网络的线性混合信号盲源分离方法。在计算了中心值向量和宽度值向量之后,在该RBF神经网络中计算了由代价函数的最大熵(ME)推导出的权值向量。该成本函数导致具有理想矩的输出的独立性,从而正确地分离原始源。仿真结果表明,该方法缩短了分离时间,分离效果良好。与ME算法相比,该算法的效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A RBF Neural Network Algorithm for Blind Source Separation of Linear Mixing Signals
This paper presents a radial basis function (RBF) neural network approach to blind source separation in linear mixture. After calculating center value vector and width value vector, weight value vector that is deduced by maximizing entropy (ME) of cost function is calculated in this RBF neural network. This cost function results in the independence of the outputs with desirable moments such that the original sources are separated properly. Simulation results show that the separation time is reduced and the separation effect is very good. Compared with ME of algorithm, the effect of this algorithm is better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信