基于固定滞后平滑的机器人定位安全性研究:误关联风险的量化

O. A. Hafez, Guillermo Duenas Arana, Yihe Chen, M. Joerger, M. Spenko
{"title":"基于固定滞后平滑的机器人定位安全性研究:误关联风险的量化","authors":"O. A. Hafez, Guillermo Duenas Arana, Yihe Chen, M. Joerger, M. Spenko","doi":"10.1109/PLANS46316.2020.9110126","DOIUrl":null,"url":null,"abstract":"Monitoring localization safety will be necessary to certify the performance of robots that operate in life-critical applications, such as autonomous passenger vehicles or delivery drones because many current localization safety methods do not account for the risk of undetected sensor faults. One type of fault, misassociation, occurs when a feature extracted from a mapped landmark is associated to a non-corresponding landmark and is a common source of error in feature-based navigation applications. This paper accounts for the probability of misassociation when quantifying landmark-based mobile robot localization safety for fixed-lag smoothing estimators. We derive a mobile robot localization safety bound and evaluate it using simulations and experimental data in an urban environment. Results show that localization safety suffers when landmark density is relatively low such that there are not enough landmarks to adequately localize and when landmark density is relatively high because of the high risk of feature misassociation.","PeriodicalId":273568,"journal":{"name":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Robot Localization Safety for Fixed-Lag Smoothing: Quantifying the Risk of Misassociation\",\"authors\":\"O. A. Hafez, Guillermo Duenas Arana, Yihe Chen, M. Joerger, M. Spenko\",\"doi\":\"10.1109/PLANS46316.2020.9110126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring localization safety will be necessary to certify the performance of robots that operate in life-critical applications, such as autonomous passenger vehicles or delivery drones because many current localization safety methods do not account for the risk of undetected sensor faults. One type of fault, misassociation, occurs when a feature extracted from a mapped landmark is associated to a non-corresponding landmark and is a common source of error in feature-based navigation applications. This paper accounts for the probability of misassociation when quantifying landmark-based mobile robot localization safety for fixed-lag smoothing estimators. We derive a mobile robot localization safety bound and evaluate it using simulations and experimental data in an urban environment. Results show that localization safety suffers when landmark density is relatively low such that there are not enough landmarks to adequately localize and when landmark density is relatively high because of the high risk of feature misassociation.\",\"PeriodicalId\":273568,\"journal\":{\"name\":\"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS46316.2020.9110126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS46316.2020.9110126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

监控定位安全对于验证机器人在关键应用(如自动乘用车或送货无人机)中的性能是必要的,因为许多当前的定位安全方法都没有考虑到未检测到的传感器故障的风险。当从映射的地标中提取的特征与不对应的地标相关联时,就会发生错误关联,这是基于特征的导航应用程序中常见的错误来源。本文考虑了固定滞后平滑估计器在量化基于地标的移动机器人定位安全性时的误关联概率。我们推导了一个移动机器人定位安全边界,并在城市环境中使用模拟和实验数据对其进行了评估。结果表明,当地标密度较低时,没有足够的地标来充分定位,当地标密度较高时,由于特征误关联的风险较高,定位安全性受到影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Robot Localization Safety for Fixed-Lag Smoothing: Quantifying the Risk of Misassociation
Monitoring localization safety will be necessary to certify the performance of robots that operate in life-critical applications, such as autonomous passenger vehicles or delivery drones because many current localization safety methods do not account for the risk of undetected sensor faults. One type of fault, misassociation, occurs when a feature extracted from a mapped landmark is associated to a non-corresponding landmark and is a common source of error in feature-based navigation applications. This paper accounts for the probability of misassociation when quantifying landmark-based mobile robot localization safety for fixed-lag smoothing estimators. We derive a mobile robot localization safety bound and evaluate it using simulations and experimental data in an urban environment. Results show that localization safety suffers when landmark density is relatively low such that there are not enough landmarks to adequately localize and when landmark density is relatively high because of the high risk of feature misassociation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信