具有饱和作动器和时变时滞的马尔可夫跳变随机双线性系统均方的指数稳定性

X. Jiao, Zongrun Liu
{"title":"具有饱和作动器和时变时滞的马尔可夫跳变随机双线性系统均方的指数稳定性","authors":"X. Jiao, Zongrun Liu","doi":"10.1109/ICICIP.2012.6391531","DOIUrl":null,"url":null,"abstract":"This paper investigates exponential stability in mean-square of stochastic bilinear systems with saturating actuators. The system is described by state differential equation with Markovian jump and time-varying delay in state and input. A sufficient condition for exponential stability in mean-square of the system is given according to Lyapunov-Krasovskii theory. A numerical example shows that the approach proposed is effective.","PeriodicalId":376265,"journal":{"name":"2012 Third International Conference on Intelligent Control and Information Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential stability in mean-square of Markovian jump stochastic bilinear systems with saturating actuators and time-varying delay\",\"authors\":\"X. Jiao, Zongrun Liu\",\"doi\":\"10.1109/ICICIP.2012.6391531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates exponential stability in mean-square of stochastic bilinear systems with saturating actuators. The system is described by state differential equation with Markovian jump and time-varying delay in state and input. A sufficient condition for exponential stability in mean-square of the system is given according to Lyapunov-Krasovskii theory. A numerical example shows that the approach proposed is effective.\",\"PeriodicalId\":376265,\"journal\":{\"name\":\"2012 Third International Conference on Intelligent Control and Information Processing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Conference on Intelligent Control and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2012.6391531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2012.6391531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有饱和作动器的随机双线性系统的均方指数稳定性。系统用状态微分方程来描述,状态和输入具有马尔可夫跳变和时变时滞。根据Lyapunov-Krasovskii理论,给出了系统均方指数稳定的充分条件。数值算例表明该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential stability in mean-square of Markovian jump stochastic bilinear systems with saturating actuators and time-varying delay
This paper investigates exponential stability in mean-square of stochastic bilinear systems with saturating actuators. The system is described by state differential equation with Markovian jump and time-varying delay in state and input. A sufficient condition for exponential stability in mean-square of the system is given according to Lyapunov-Krasovskii theory. A numerical example shows that the approach proposed is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信