电力系统喷注空间上DSR的微分拓扑特征

Yixin Yu, Yuan Zeng, Fei Feng
{"title":"电力系统喷注空间上DSR的微分拓扑特征","authors":"Yixin Yu, Yuan Zeng, Fei Feng","doi":"10.1360/02YE9066","DOIUrl":null,"url":null,"abstract":"This paper analyzes the differential topological characteristics of the dynamic security region (DSR) on injection space of electrical power system by differential topology theories. It is shown that the boundary of the DSR on injection space has no suspension and is compact, and there are no holes inside the DSR defined based on controlling unstable equilibrium point (UEP) method. The 10-generator, 39-bus New England Test System, is taken as an example to show these characteristics of the DSR on injection space.","PeriodicalId":119807,"journal":{"name":"Science in China Series E: Technological Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Differential topological characteristics of the DSR on injection space of electrical power system\",\"authors\":\"Yixin Yu, Yuan Zeng, Fei Feng\",\"doi\":\"10.1360/02YE9066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the differential topological characteristics of the dynamic security region (DSR) on injection space of electrical power system by differential topology theories. It is shown that the boundary of the DSR on injection space has no suspension and is compact, and there are no holes inside the DSR defined based on controlling unstable equilibrium point (UEP) method. The 10-generator, 39-bus New England Test System, is taken as an example to show these characteristics of the DSR on injection space.\",\"PeriodicalId\":119807,\"journal\":{\"name\":\"Science in China Series E: Technological Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science in China Series E: Technological Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1360/02YE9066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in China Series E: Technological Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1360/02YE9066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

利用微分拓扑理论分析了电力系统注入空间动态安全区域的微分拓扑特征。结果表明,基于控制不稳定平衡点(UEP)方法定义的喷注空间上的DSR边界无悬浮且致密,且DSR内部不存在孔洞。以10台发电机、39总线的新英格兰测试系统为例,展示了喷注空间DSR的这些特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential topological characteristics of the DSR on injection space of electrical power system
This paper analyzes the differential topological characteristics of the dynamic security region (DSR) on injection space of electrical power system by differential topology theories. It is shown that the boundary of the DSR on injection space has no suspension and is compact, and there are no holes inside the DSR defined based on controlling unstable equilibrium point (UEP) method. The 10-generator, 39-bus New England Test System, is taken as an example to show these characteristics of the DSR on injection space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信