随机介质中的地方性SIR模型

M. Svishchuk
{"title":"随机介质中的地方性SIR模型","authors":"M. Svishchuk","doi":"10.2139/ssrn.2272922","DOIUrl":null,"url":null,"abstract":"We consider an averaging principle for the endemic SIR model in a semi-Markov random media. Under stationary conditions of a semi-Markov media we show that the perturbed endemic SIR model converges to the classic endemic SIR model with averaged coefficients. Novelty of the paper lies in the study of an endemic SIR model in semi-Markov random media.","PeriodicalId":103032,"journal":{"name":"OPER: Analytical (Topic)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Endemic SIR Model in Random Media\",\"authors\":\"M. Svishchuk\",\"doi\":\"10.2139/ssrn.2272922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an averaging principle for the endemic SIR model in a semi-Markov random media. Under stationary conditions of a semi-Markov media we show that the perturbed endemic SIR model converges to the classic endemic SIR model with averaged coefficients. Novelty of the paper lies in the study of an endemic SIR model in semi-Markov random media.\",\"PeriodicalId\":103032,\"journal\":{\"name\":\"OPER: Analytical (Topic)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OPER: Analytical (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2272922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OPER: Analytical (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2272922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了半马尔可夫随机介质中地方性SIR模型的平均原理。在半马尔可夫介质的平稳条件下,我们证明了扰动地方性SIR模型收敛于具有平均系数的经典地方性SIR模型。本文的新颖之处在于研究了半马尔可夫随机介质中特有的SIR模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endemic SIR Model in Random Media
We consider an averaging principle for the endemic SIR model in a semi-Markov random media. Under stationary conditions of a semi-Markov media we show that the perturbed endemic SIR model converges to the classic endemic SIR model with averaged coefficients. Novelty of the paper lies in the study of an endemic SIR model in semi-Markov random media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信