对一个自动调整系统设计的最佳稀疏压缩格式选择与用户的专业知识

Ichrak Mehrez, O. Hamdi-Larbi, T. Dufaud, N. Emad
{"title":"对一个自动调整系统设计的最佳稀疏压缩格式选择与用户的专业知识","authors":"Ichrak Mehrez, O. Hamdi-Larbi, T. Dufaud, N. Emad","doi":"10.1109/AICCSA.2016.7945829","DOIUrl":null,"url":null,"abstract":"Several applications in numerical scientific computing process sparse matrices with either a regular or irregular structure. The very large size of these matrices requires to use compressing formats and target parallel/distributed architectures in order to reduce both space complexity and processing time. The optimal compression format (OCF) of such matrices may in fact vary according to both the application context of the numerical method and the target hardware architecture. In this paper, we propose a design of a system that automatically selects the OCF according to the two above cited parameters. The expert system obtained from our model targets dynamic integration of the user expertise thus allowing better performances. The optimal format selection is based on the makespan criterion. As a first validation test of our system, we studied the representative case of Horner scheme in the context of data parallel programming model and multicore cluster. Our experiments focus on the four compression formats CSR, CSC, COO and ELLPACK and their complexities in a data parallel programming model context.","PeriodicalId":448329,"journal":{"name":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards an auto-tuning system design for optimal sparse compression format selection with user expertise\",\"authors\":\"Ichrak Mehrez, O. Hamdi-Larbi, T. Dufaud, N. Emad\",\"doi\":\"10.1109/AICCSA.2016.7945829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several applications in numerical scientific computing process sparse matrices with either a regular or irregular structure. The very large size of these matrices requires to use compressing formats and target parallel/distributed architectures in order to reduce both space complexity and processing time. The optimal compression format (OCF) of such matrices may in fact vary according to both the application context of the numerical method and the target hardware architecture. In this paper, we propose a design of a system that automatically selects the OCF according to the two above cited parameters. The expert system obtained from our model targets dynamic integration of the user expertise thus allowing better performances. The optimal format selection is based on the makespan criterion. As a first validation test of our system, we studied the representative case of Horner scheme in the context of data parallel programming model and multicore cluster. Our experiments focus on the four compression formats CSR, CSC, COO and ELLPACK and their complexities in a data parallel programming model context.\",\"PeriodicalId\":448329,\"journal\":{\"name\":\"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICCSA.2016.7945829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2016.7945829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

稀疏矩阵在数值科学计算中的几种应用。这些矩阵的非常大的尺寸需要使用压缩格式和目标并行/分布式架构,以减少空间复杂性和处理时间。这种矩阵的最优压缩格式(OCF)实际上可能根据数值方法的应用环境和目标硬件体系结构而变化。在本文中,我们提出了一种根据上述两个参数自动选择OCF的系统设计。从我们的模型中获得的专家系统目标是用户专业知识的动态集成,从而实现更好的性能。最优格式选择基于makespan标准。作为系统的第一个验证测试,我们研究了在数据并行编程模型和多核集群环境下Horner方案的代表性案例。我们的实验集中于四种压缩格式CSR, CSC, COO和ELLPACK及其在数据并行编程模型环境中的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards an auto-tuning system design for optimal sparse compression format selection with user expertise
Several applications in numerical scientific computing process sparse matrices with either a regular or irregular structure. The very large size of these matrices requires to use compressing formats and target parallel/distributed architectures in order to reduce both space complexity and processing time. The optimal compression format (OCF) of such matrices may in fact vary according to both the application context of the numerical method and the target hardware architecture. In this paper, we propose a design of a system that automatically selects the OCF according to the two above cited parameters. The expert system obtained from our model targets dynamic integration of the user expertise thus allowing better performances. The optimal format selection is based on the makespan criterion. As a first validation test of our system, we studied the representative case of Horner scheme in the context of data parallel programming model and multicore cluster. Our experiments focus on the four compression formats CSR, CSC, COO and ELLPACK and their complexities in a data parallel programming model context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信