我们信任硬件

L. Batina, Patrick Jauernig, N. Mentens, A. Sadeghi, Emmanuel Stapf
{"title":"我们信任硬件","authors":"L. Batina, Patrick Jauernig, N. Mentens, A. Sadeghi, Emmanuel Stapf","doi":"10.1145/3316781.3323480","DOIUrl":null,"url":null,"abstract":"Data processing and communication in almost all electronic systems are based on Central Processing Units (CPUs). In order to guarantee confidentiality and integrity of the software running on a CPU, hardware-assisted security architectures are used. However, both the threat model and the non-functional platform requirements, i.e. performance and energy budget, differ when we go from high-end desktop computers and servers to low-end embedded devices that populate the internet of things (IoT). For high-end platforms, a relatively large energy budget is available to protect software against attacks. However, measures to optimize performance give rise to microarchitectural side-channel attacks. IoT devices, in contrast, are constrained in terms of energy consumption and do not incorporate the performance enhancements found in high-end CPUs. Hence, they are less likely to be susceptible to microarchitectural attacks, but give rise to physical attacks, exploiting, e.g., leakage in power consumption or through fault injection. Whereas previous work mostly concentrates on a specific architecture, this paper covers the whole spectrum of computing systems, comparing the corresponding hardware architectures, and most relevant threats.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"In Hardware We Trust\",\"authors\":\"L. Batina, Patrick Jauernig, N. Mentens, A. Sadeghi, Emmanuel Stapf\",\"doi\":\"10.1145/3316781.3323480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data processing and communication in almost all electronic systems are based on Central Processing Units (CPUs). In order to guarantee confidentiality and integrity of the software running on a CPU, hardware-assisted security architectures are used. However, both the threat model and the non-functional platform requirements, i.e. performance and energy budget, differ when we go from high-end desktop computers and servers to low-end embedded devices that populate the internet of things (IoT). For high-end platforms, a relatively large energy budget is available to protect software against attacks. However, measures to optimize performance give rise to microarchitectural side-channel attacks. IoT devices, in contrast, are constrained in terms of energy consumption and do not incorporate the performance enhancements found in high-end CPUs. Hence, they are less likely to be susceptible to microarchitectural attacks, but give rise to physical attacks, exploiting, e.g., leakage in power consumption or through fault injection. Whereas previous work mostly concentrates on a specific architecture, this paper covers the whole spectrum of computing systems, comparing the corresponding hardware architectures, and most relevant threats.\",\"PeriodicalId\":391209,\"journal\":{\"name\":\"Proceedings of the 56th Annual Design Automation Conference 2019\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 56th Annual Design Automation Conference 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3316781.3323480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3323480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Hardware We Trust
Data processing and communication in almost all electronic systems are based on Central Processing Units (CPUs). In order to guarantee confidentiality and integrity of the software running on a CPU, hardware-assisted security architectures are used. However, both the threat model and the non-functional platform requirements, i.e. performance and energy budget, differ when we go from high-end desktop computers and servers to low-end embedded devices that populate the internet of things (IoT). For high-end platforms, a relatively large energy budget is available to protect software against attacks. However, measures to optimize performance give rise to microarchitectural side-channel attacks. IoT devices, in contrast, are constrained in terms of energy consumption and do not incorporate the performance enhancements found in high-end CPUs. Hence, they are less likely to be susceptible to microarchitectural attacks, but give rise to physical attacks, exploiting, e.g., leakage in power consumption or through fault injection. Whereas previous work mostly concentrates on a specific architecture, this paper covers the whole spectrum of computing systems, comparing the corresponding hardware architectures, and most relevant threats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信