估计参数估计量的贝叶斯风险

Hajime Yamato, 大和 元
{"title":"估计参数估计量的贝叶斯风险","authors":"Hajime Yamato, 大和 元","doi":"10.5109/13136","DOIUrl":null,"url":null,"abstract":"For the estimable parameter of degree 2, throughout this paper, we consider 02 with h2 such that h2(x, x) and h2(x, x)=0 for any x, yEX. As estimators of estimable parameters, U-statistics and differentiable statistical functions are well known. (See, for example, Hoeffding (1948) and von Mises (1947).) For an estimable parameter of degree 1, the U-statistic is identical with the differ entiable statistical function, which is given by","PeriodicalId":287765,"journal":{"name":"Bulletin of Mathematical Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BAYES RISKS OF ESTIMATORS OF ESTIMABLE PARAMETERS\",\"authors\":\"Hajime Yamato, 大和 元\",\"doi\":\"10.5109/13136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the estimable parameter of degree 2, throughout this paper, we consider 02 with h2 such that h2(x, x) and h2(x, x)=0 for any x, yEX. As estimators of estimable parameters, U-statistics and differentiable statistical functions are well known. (See, for example, Hoeffding (1948) and von Mises (1947).) For an estimable parameter of degree 1, the U-statistic is identical with the differ entiable statistical function, which is given by\",\"PeriodicalId\":287765,\"journal\":{\"name\":\"Bulletin of Mathematical Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5109/13136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5109/13136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于2次的可估计参数,本文考虑02与h2,使得h2(x, x)和h2(x, x)对任意x, yEX =0。作为可估计参数的估计量,u统计量和可微统计函数是众所周知的。(例如,参见Hoeffding(1948)和von Mises(1947)。)对于1次可估计参数,u统计量与可变统计函数相同,可变统计函数由
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BAYES RISKS OF ESTIMATORS OF ESTIMABLE PARAMETERS
For the estimable parameter of degree 2, throughout this paper, we consider 02 with h2 such that h2(x, x) and h2(x, x)=0 for any x, yEX. As estimators of estimable parameters, U-statistics and differentiable statistical functions are well known. (See, for example, Hoeffding (1948) and von Mises (1947).) For an estimable parameter of degree 1, the U-statistic is identical with the differ entiable statistical function, which is given by
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信