基于Kinect的HOG静态手势识别

Hui Li, Lei Yang, Xiaoyu Wu, Shengmiao Xu, Youwen Wang
{"title":"基于Kinect的HOG静态手势识别","authors":"Hui Li, Lei Yang, Xiaoyu Wu, Shengmiao Xu, Youwen Wang","doi":"10.1109/IHMSC.2012.75","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and implement a novel method for recognition static hand gestures using depth data from Kinect sensor of Microsoft. Compared to the entire human body, the hand is a smaller object with more complex articulations and more easily affected by segmentation errors. So it is a very challenging problem to recognize hand gestures. Our approach involves choosing HOG feature with both geometric moment invariant features and adapted to the light transform by analyzing the features of hands characteristics. Through the rapid cascade Adaboost training algorithm obtains the training models of gestures and matches them, thus build the accuracy and efficiency hand gesture recognition system using the Kinect sensor.","PeriodicalId":431532,"journal":{"name":"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Static Hand Gesture Recognition Based on HOG with Kinect\",\"authors\":\"Hui Li, Lei Yang, Xiaoyu Wu, Shengmiao Xu, Youwen Wang\",\"doi\":\"10.1109/IHMSC.2012.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose and implement a novel method for recognition static hand gestures using depth data from Kinect sensor of Microsoft. Compared to the entire human body, the hand is a smaller object with more complex articulations and more easily affected by segmentation errors. So it is a very challenging problem to recognize hand gestures. Our approach involves choosing HOG feature with both geometric moment invariant features and adapted to the light transform by analyzing the features of hands characteristics. Through the rapid cascade Adaboost training algorithm obtains the training models of gestures and matches them, thus build the accuracy and efficiency hand gesture recognition system using the Kinect sensor.\",\"PeriodicalId\":431532,\"journal\":{\"name\":\"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2012.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2012.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文提出并实现了一种基于Kinect传感器深度数据的静态手势识别新方法。与整个人体相比,手是一个更小的物体,更复杂的关节,更容易受到分割错误的影响。所以识别手势是一个非常具有挑战性的问题。该方法通过分析手的特征,选择具有几何矩不变特征和适应光变换特征的HOG特征。通过快速级联Adaboost训练算法获得手势训练模型并进行匹配,从而构建使用Kinect传感器的准确高效的手势识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Static Hand Gesture Recognition Based on HOG with Kinect
In this paper, we propose and implement a novel method for recognition static hand gestures using depth data from Kinect sensor of Microsoft. Compared to the entire human body, the hand is a smaller object with more complex articulations and more easily affected by segmentation errors. So it is a very challenging problem to recognize hand gestures. Our approach involves choosing HOG feature with both geometric moment invariant features and adapted to the light transform by analyzing the features of hands characteristics. Through the rapid cascade Adaboost training algorithm obtains the training models of gestures and matches them, thus build the accuracy and efficiency hand gesture recognition system using the Kinect sensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信