脑电数据集功能连接度量的比较分析

A. Maratova, P. Lencastre, A. Yazidi, P. Lind
{"title":"脑电数据集功能连接度量的比较分析","authors":"A. Maratova, P. Lencastre, A. Yazidi, P. Lind","doi":"10.1109/SPMB55497.2022.10014890","DOIUrl":null,"url":null,"abstract":"Analysis of functional connectivity helps to determine how brain regions interact with one another and to understand neurological diseases better. In this study, we compare functional connectivity networks derived from electroencephalogram (EEG) data using Pearson's correlation and mutual information. The TUH EEG Epilepsy Corpus (TUEP) dataset is analysed with methods from Graph Theory, Statistics and Machine Learning. Our findings can be used to develop features for predictive models. Specifically, we show that with just 19 channels, a convolutional neural network model achieves 94% and 95% area under the receiver operating characteristic (ROC) curve (AUC) for correlation and mutual information, respectively. Thus, we provide evidence that application of Machine Learning methods to EEG data not containing seizures can help to accurately identify individuals with epilepsy. This may have considerable implications on diagnosing the pathology.","PeriodicalId":261445,"journal":{"name":"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Functional Connectivity Metrics in EEG Datasets\",\"authors\":\"A. Maratova, P. Lencastre, A. Yazidi, P. Lind\",\"doi\":\"10.1109/SPMB55497.2022.10014890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of functional connectivity helps to determine how brain regions interact with one another and to understand neurological diseases better. In this study, we compare functional connectivity networks derived from electroencephalogram (EEG) data using Pearson's correlation and mutual information. The TUH EEG Epilepsy Corpus (TUEP) dataset is analysed with methods from Graph Theory, Statistics and Machine Learning. Our findings can be used to develop features for predictive models. Specifically, we show that with just 19 channels, a convolutional neural network model achieves 94% and 95% area under the receiver operating characteristic (ROC) curve (AUC) for correlation and mutual information, respectively. Thus, we provide evidence that application of Machine Learning methods to EEG data not containing seizures can help to accurately identify individuals with epilepsy. This may have considerable implications on diagnosing the pathology.\",\"PeriodicalId\":261445,\"journal\":{\"name\":\"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPMB55497.2022.10014890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPMB55497.2022.10014890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对功能连接的分析有助于确定大脑区域如何相互作用,并更好地了解神经系统疾病。在这项研究中,我们使用Pearson相关和互信息来比较从脑电图(EEG)数据中得到的功能连接网络。采用图论、统计学和机器学习的方法对TUEP数据集进行分析。我们的发现可以用来开发预测模型的特征。具体来说,我们表明,仅在19个通道下,卷积神经网络模型在接收器工作特征(ROC)曲线(AUC)下的相关信息和互信息面积分别达到94%和95%。因此,我们提供的证据表明,将机器学习方法应用于不包含癫痫发作的脑电图数据可以帮助准确识别癫痫患者。这可能对病理诊断有相当大的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of Functional Connectivity Metrics in EEG Datasets
Analysis of functional connectivity helps to determine how brain regions interact with one another and to understand neurological diseases better. In this study, we compare functional connectivity networks derived from electroencephalogram (EEG) data using Pearson's correlation and mutual information. The TUH EEG Epilepsy Corpus (TUEP) dataset is analysed with methods from Graph Theory, Statistics and Machine Learning. Our findings can be used to develop features for predictive models. Specifically, we show that with just 19 channels, a convolutional neural network model achieves 94% and 95% area under the receiver operating characteristic (ROC) curve (AUC) for correlation and mutual information, respectively. Thus, we provide evidence that application of Machine Learning methods to EEG data not containing seizures can help to accurately identify individuals with epilepsy. This may have considerable implications on diagnosing the pathology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信