在基于分块的分形图像编码过程中加速压缩时间

J. Valantinas, N. Morkevicius, T. Zumbakis
{"title":"在基于分块的分形图像编码过程中加速压缩时间","authors":"J. Valantinas, N. Morkevicius, T. Zumbakis","doi":"10.1109/EGUK.2002.1011276","DOIUrl":null,"url":null,"abstract":"Fractal image compression turns out to be a powerful and competitive technology, which can be successively applied to a still image coding, especially at high compression rates. Unfortunately, a large amount of computation needed for the compression stage remains to be a serious obstacle in exploring this new perspective approach. Diversified attempts are made to improve the situation. In particular, theoretical investigations and experiments show that the problem-oriented use of invariant image parameters (image smoothness estimates) can serve the purpose.","PeriodicalId":226195,"journal":{"name":"Proceedings 20th Eurographics UK Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Accelerating compression times in block based fractal image coding procedures\",\"authors\":\"J. Valantinas, N. Morkevicius, T. Zumbakis\",\"doi\":\"10.1109/EGUK.2002.1011276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractal image compression turns out to be a powerful and competitive technology, which can be successively applied to a still image coding, especially at high compression rates. Unfortunately, a large amount of computation needed for the compression stage remains to be a serious obstacle in exploring this new perspective approach. Diversified attempts are made to improve the situation. In particular, theoretical investigations and experiments show that the problem-oriented use of invariant image parameters (image smoothness estimates) can serve the purpose.\",\"PeriodicalId\":226195,\"journal\":{\"name\":\"Proceedings 20th Eurographics UK Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 20th Eurographics UK Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EGUK.2002.1011276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 20th Eurographics UK Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EGUK.2002.1011276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

分形图像压缩是一种强大而有竞争力的技术,它可以连续应用于静止图像的编码,特别是在高压缩率的情况下。不幸的是,压缩阶段所需的大量计算仍然是探索这种新视角方法的一个严重障碍。人们采取了多种措施来改善这种状况。特别是,理论研究和实验表明,以问题为导向使用不变图像参数(图像平滑估计)可以达到目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating compression times in block based fractal image coding procedures
Fractal image compression turns out to be a powerful and competitive technology, which can be successively applied to a still image coding, especially at high compression rates. Unfortunately, a large amount of computation needed for the compression stage remains to be a serious obstacle in exploring this new perspective approach. Diversified attempts are made to improve the situation. In particular, theoretical investigations and experiments show that the problem-oriented use of invariant image parameters (image smoothness estimates) can serve the purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信