非平衡数据集的lof增强SMOTE算法

Zhuangzhuang Zhang, Jing Hu, Tiecheng Song
{"title":"非平衡数据集的lof增强SMOTE算法","authors":"Zhuangzhuang Zhang, Jing Hu, Tiecheng Song","doi":"10.1117/12.2685807","DOIUrl":null,"url":null,"abstract":"This paper proposes a new algorithm, LOF-Enhanced SMOTE, aimed at addressing the problem of imbalanced datasets in machine learning tasks. Due to the significantly fewer samples of certain classes in imbalanced datasets, the performance of classifiers may be negatively affected. To solve this problem, we introduce the Local Outlier Factor (LOF) algorithm to remove boundary noise on the basis of the SMOTE algorithm, and use a Gaussian kernel function to consider the similarity of generated samples. We conduct experiments on real intrusion detection data, UNSW-NB15. The results show that LOF-Enhanced SMOTE outperforms SMOTE and Borderline-SMOTE algorithms overall, and significantly outperforms them in detecting certain minority classes. This indicates that the LOF-Enhanced SMOTE algorithm can effectively solve the classification problem of imbalanced datasets.","PeriodicalId":305812,"journal":{"name":"International Conference on Electronic Information Technology","volume":"12719 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LOF-enhanced SMOTE algorithm for imbalanced dataset\",\"authors\":\"Zhuangzhuang Zhang, Jing Hu, Tiecheng Song\",\"doi\":\"10.1117/12.2685807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new algorithm, LOF-Enhanced SMOTE, aimed at addressing the problem of imbalanced datasets in machine learning tasks. Due to the significantly fewer samples of certain classes in imbalanced datasets, the performance of classifiers may be negatively affected. To solve this problem, we introduce the Local Outlier Factor (LOF) algorithm to remove boundary noise on the basis of the SMOTE algorithm, and use a Gaussian kernel function to consider the similarity of generated samples. We conduct experiments on real intrusion detection data, UNSW-NB15. The results show that LOF-Enhanced SMOTE outperforms SMOTE and Borderline-SMOTE algorithms overall, and significantly outperforms them in detecting certain minority classes. This indicates that the LOF-Enhanced SMOTE algorithm can effectively solve the classification problem of imbalanced datasets.\",\"PeriodicalId\":305812,\"journal\":{\"name\":\"International Conference on Electronic Information Technology\",\"volume\":\"12719 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electronic Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2685807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronic Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2685807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的LOF-Enhanced SMOTE算法,旨在解决机器学习任务中数据集不平衡的问题。由于不平衡数据集中某些类别的样本明显减少,分类器的性能可能会受到负面影响。为了解决这一问题,我们在SMOTE算法的基础上引入了局部离群因子(LOF)算法来去除边界噪声,并使用高斯核函数来考虑生成样本的相似度。我们在真实入侵检测数据UNSW-NB15上进行实验。结果表明,LOF-Enhanced SMOTE算法总体上优于SMOTE算法和Borderline-SMOTE算法,并且在检测某些少数类时显著优于它们。这表明lof增强的SMOTE算法可以有效地解决不平衡数据集的分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LOF-enhanced SMOTE algorithm for imbalanced dataset
This paper proposes a new algorithm, LOF-Enhanced SMOTE, aimed at addressing the problem of imbalanced datasets in machine learning tasks. Due to the significantly fewer samples of certain classes in imbalanced datasets, the performance of classifiers may be negatively affected. To solve this problem, we introduce the Local Outlier Factor (LOF) algorithm to remove boundary noise on the basis of the SMOTE algorithm, and use a Gaussian kernel function to consider the similarity of generated samples. We conduct experiments on real intrusion detection data, UNSW-NB15. The results show that LOF-Enhanced SMOTE outperforms SMOTE and Borderline-SMOTE algorithms overall, and significantly outperforms them in detecting certain minority classes. This indicates that the LOF-Enhanced SMOTE algorithm can effectively solve the classification problem of imbalanced datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信