基于文本和图像描述符符号融合的动画电影类型检测

Grégory Païs, P. Lambert, Daniel Beauchêne, F. Deloule, B. Ionescu
{"title":"基于文本和图像描述符符号融合的动画电影类型检测","authors":"Grégory Païs, P. Lambert, Daniel Beauchêne, F. Deloule, B. Ionescu","doi":"10.1109/CBMI.2012.6269813","DOIUrl":null,"url":null,"abstract":"This paper addresses the automatic movie genre classification in the specific case of animated movies. Two types of information are used. The first one are movie synopsis. For each genre, a symbolic representation of a thematic intensity is extracted from synopsis. Addressed visually, movie content is described with symbolic representations of different mid-level color and activity features. A fusion between the text and image descriptions is performed using a set of symbolic rules conveying human expertise. The approach is tested on a set of 107 animated movies in order to estimate their ”drama” character. It is observed that the text-image fusion achieves a precision up to 78% and a recall of 44%.","PeriodicalId":120769,"journal":{"name":"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Animated movie genre detection using symbolic fusion of text and image descriptors\",\"authors\":\"Grégory Païs, P. Lambert, Daniel Beauchêne, F. Deloule, B. Ionescu\",\"doi\":\"10.1109/CBMI.2012.6269813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the automatic movie genre classification in the specific case of animated movies. Two types of information are used. The first one are movie synopsis. For each genre, a symbolic representation of a thematic intensity is extracted from synopsis. Addressed visually, movie content is described with symbolic representations of different mid-level color and activity features. A fusion between the text and image descriptions is performed using a set of symbolic rules conveying human expertise. The approach is tested on a set of 107 animated movies in order to estimate their ”drama” character. It is observed that the text-image fusion achieves a precision up to 78% and a recall of 44%.\",\"PeriodicalId\":120769,\"journal\":{\"name\":\"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2012.6269813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2012.6269813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文以动画电影为例,研究了电影类型的自动分类。使用了两种类型的信息。第一个是电影大纲。对于每种类型,从概要中提取出主题强度的符号表示。从视觉上讲,电影内容是用不同中级颜色和活动特征的符号表示来描述的。文本和图像描述之间的融合是使用一组传递人类专业知识的符号规则来完成的。该方法在107部动画电影中进行了测试,以评估它们的“戏剧性”特征。结果表明,文本图像融合的准确率高达78%,召回率为44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Animated movie genre detection using symbolic fusion of text and image descriptors
This paper addresses the automatic movie genre classification in the specific case of animated movies. Two types of information are used. The first one are movie synopsis. For each genre, a symbolic representation of a thematic intensity is extracted from synopsis. Addressed visually, movie content is described with symbolic representations of different mid-level color and activity features. A fusion between the text and image descriptions is performed using a set of symbolic rules conveying human expertise. The approach is tested on a set of 107 animated movies in order to estimate their ”drama” character. It is observed that the text-image fusion achieves a precision up to 78% and a recall of 44%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信