{"title":"固态离子动力学蒙特卡罗模拟:MOCASSIN程序的案例研究","authors":"S. Grieshammer, Sebastian Eisele","doi":"10.4028/www.scientific.net/DF.29.117","DOIUrl":null,"url":null,"abstract":"Kinetic Monte Carlo simulations are a useful tool to predict and analyze the ionic conductivity in crystalline materials. We present here the basic functionalities and capabilities of our recently published Monte Carlo software for solid state ionics called MOCASSIN, exemplified by simulations of several model systems and real materials. We address the simulation of tracer correlation factors for various structures, the correlation in systems with complex migration mechanisms like interstitialcy or vehicle transport, and the impact of defect interactions on ionic conductivity. Simulations of real materials include a review of oxygen vacancy migration in doped ceria, oxygen interstitial migration in La-rich melilites, and proton conduction in acceptor doped fully hydrated barium zirconate. The results reveal the impact of defect interactions on the ionic conductivity and the importance of the defect distribution. Combinations of these effects can lead to unexpected transport behavior in solid state ionic materials, especially for multiple mobile species. Kinetic Monte Carlo simulations are therefore useful to interpret experimental data which shows unexpected behavior regarding the dependence on temperature and composition.","PeriodicalId":311581,"journal":{"name":"Diffusion Foundations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic Monte Carlo Simulations for Solid State Ionics: Case Studies with the MOCASSIN Program\",\"authors\":\"S. Grieshammer, Sebastian Eisele\",\"doi\":\"10.4028/www.scientific.net/DF.29.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinetic Monte Carlo simulations are a useful tool to predict and analyze the ionic conductivity in crystalline materials. We present here the basic functionalities and capabilities of our recently published Monte Carlo software for solid state ionics called MOCASSIN, exemplified by simulations of several model systems and real materials. We address the simulation of tracer correlation factors for various structures, the correlation in systems with complex migration mechanisms like interstitialcy or vehicle transport, and the impact of defect interactions on ionic conductivity. Simulations of real materials include a review of oxygen vacancy migration in doped ceria, oxygen interstitial migration in La-rich melilites, and proton conduction in acceptor doped fully hydrated barium zirconate. The results reveal the impact of defect interactions on the ionic conductivity and the importance of the defect distribution. Combinations of these effects can lead to unexpected transport behavior in solid state ionic materials, especially for multiple mobile species. Kinetic Monte Carlo simulations are therefore useful to interpret experimental data which shows unexpected behavior regarding the dependence on temperature and composition.\",\"PeriodicalId\":311581,\"journal\":{\"name\":\"Diffusion Foundations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diffusion Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/DF.29.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffusion Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/DF.29.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinetic Monte Carlo Simulations for Solid State Ionics: Case Studies with the MOCASSIN Program
Kinetic Monte Carlo simulations are a useful tool to predict and analyze the ionic conductivity in crystalline materials. We present here the basic functionalities and capabilities of our recently published Monte Carlo software for solid state ionics called MOCASSIN, exemplified by simulations of several model systems and real materials. We address the simulation of tracer correlation factors for various structures, the correlation in systems with complex migration mechanisms like interstitialcy or vehicle transport, and the impact of defect interactions on ionic conductivity. Simulations of real materials include a review of oxygen vacancy migration in doped ceria, oxygen interstitial migration in La-rich melilites, and proton conduction in acceptor doped fully hydrated barium zirconate. The results reveal the impact of defect interactions on the ionic conductivity and the importance of the defect distribution. Combinations of these effects can lead to unexpected transport behavior in solid state ionic materials, especially for multiple mobile species. Kinetic Monte Carlo simulations are therefore useful to interpret experimental data which shows unexpected behavior regarding the dependence on temperature and composition.