一种改进的差分进化优化算法

Jin Huibin, Liu Mingguang
{"title":"一种改进的差分进化优化算法","authors":"Jin Huibin, Liu Mingguang","doi":"10.1109/CASE.2009.116","DOIUrl":null,"url":null,"abstract":"Differential Evolution (DE) is an efficient approach capable of handling non-differentiable, non-linear and multi-model objective functions. However, in convergence speed and global optimization, there is still much room for DE to be improved. In this paper, double best mutation operation and chaos Differential Evolution are proposed to improve DE algorithm’s optimized performance. The simulated cases show modified differential evolution algorithm has rapid convergence speed and strong steadiness.","PeriodicalId":294566,"journal":{"name":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Improved Differential Evolution Alogorithm for Optimization\",\"authors\":\"Jin Huibin, Liu Mingguang\",\"doi\":\"10.1109/CASE.2009.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential Evolution (DE) is an efficient approach capable of handling non-differentiable, non-linear and multi-model objective functions. However, in convergence speed and global optimization, there is still much room for DE to be improved. In this paper, double best mutation operation and chaos Differential Evolution are proposed to improve DE algorithm’s optimized performance. The simulated cases show modified differential evolution algorithm has rapid convergence speed and strong steadiness.\",\"PeriodicalId\":294566,\"journal\":{\"name\":\"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE.2009.116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2009.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

差分进化(DE)是一种处理不可微、非线性和多模型目标函数的有效方法。但是,在收敛速度和全局优化方面,DE还有很大的提升空间。本文提出了双最优变异操作和混沌微分进化来提高DE算法的优化性能。仿真结果表明,改进的差分进化算法收敛速度快,稳定性强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Differential Evolution Alogorithm for Optimization
Differential Evolution (DE) is an efficient approach capable of handling non-differentiable, non-linear and multi-model objective functions. However, in convergence speed and global optimization, there is still much room for DE to be improved. In this paper, double best mutation operation and chaos Differential Evolution are proposed to improve DE algorithm’s optimized performance. The simulated cases show modified differential evolution algorithm has rapid convergence speed and strong steadiness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信