基于FPGA的多分辨率实时密集立体视觉处理

Eduardo Gudis, G. V. D. Wal, S. Kuthirummal, S. Chai
{"title":"基于FPGA的多分辨率实时密集立体视觉处理","authors":"Eduardo Gudis, G. V. D. Wal, S. Kuthirummal, S. Chai","doi":"10.1109/FCCM.2012.15","DOIUrl":null,"url":null,"abstract":"High-performance dense stereo is a critical component of computer vision applications like 3D reconstruction, robot navigation, and augmented reality. In this paper, we present a low-power, high performance FPGA implementation of a stereo algorithm suitable for embedded real-time platforms. The design is scalable for higher resolution images and frame rates and supporting different cameras and application requirements. We achieve this by designing highly parallel computation cores with very efficient memory access to the image data. Using a prototype board, we demonstrate real-time stereo processing with 640×480 pixel GigE Vision cameras at 30 frames per second. We show that this FPGA design is 10 times lower power, more scalable and has lower latency, as compared to a GPU based implementation of the same stereo algorithm.","PeriodicalId":226197,"journal":{"name":"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multi-Resolution Real-Time Dense Stereo Vision Processing in FPGA\",\"authors\":\"Eduardo Gudis, G. V. D. Wal, S. Kuthirummal, S. Chai\",\"doi\":\"10.1109/FCCM.2012.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-performance dense stereo is a critical component of computer vision applications like 3D reconstruction, robot navigation, and augmented reality. In this paper, we present a low-power, high performance FPGA implementation of a stereo algorithm suitable for embedded real-time platforms. The design is scalable for higher resolution images and frame rates and supporting different cameras and application requirements. We achieve this by designing highly parallel computation cores with very efficient memory access to the image data. Using a prototype board, we demonstrate real-time stereo processing with 640×480 pixel GigE Vision cameras at 30 frames per second. We show that this FPGA design is 10 times lower power, more scalable and has lower latency, as compared to a GPU based implementation of the same stereo algorithm.\",\"PeriodicalId\":226197,\"journal\":{\"name\":\"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2012.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2012.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

高性能密集立体是计算机视觉应用的关键组成部分,如3D重建、机器人导航和增强现实。在本文中,我们提出了一种适合嵌入式实时平台的低功耗,高性能的立体算法的FPGA实现。该设计可扩展到更高分辨率的图像和帧速率,并支持不同的相机和应用需求。我们通过设计高度并行的计算核来实现这一点,这些核具有对图像数据的高效内存访问。使用原型板,我们演示了640×480像素GigE视觉相机每秒30帧的实时立体处理。我们表明,与基于GPU的相同立体算法实现相比,这种FPGA设计的功耗低10倍,更具可扩展性并且具有更低的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Resolution Real-Time Dense Stereo Vision Processing in FPGA
High-performance dense stereo is a critical component of computer vision applications like 3D reconstruction, robot navigation, and augmented reality. In this paper, we present a low-power, high performance FPGA implementation of a stereo algorithm suitable for embedded real-time platforms. The design is scalable for higher resolution images and frame rates and supporting different cameras and application requirements. We achieve this by designing highly parallel computation cores with very efficient memory access to the image data. Using a prototype board, we demonstrate real-time stereo processing with 640×480 pixel GigE Vision cameras at 30 frames per second. We show that this FPGA design is 10 times lower power, more scalable and has lower latency, as compared to a GPU based implementation of the same stereo algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信