ECB加密图像的深度学习视觉特征保护研究

Kasidit Chunhachatchawhankhun, Prarinya Siritanawan, Karin Sumongkayothin, K. Kotani
{"title":"ECB加密图像的深度学习视觉特征保护研究","authors":"Kasidit Chunhachatchawhankhun, Prarinya Siritanawan, Karin Sumongkayothin, K. Kotani","doi":"10.1109/KSE53942.2021.9648821","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate that images encrypted with Advanced Encryption Standard (AES) in Electronic Code Book (ECB) mode retain some local properties of the original images that Deep Neural Networks (DNNs) can detect these properties and perform classification tasks on this encrypted data. The experiment with the ECB encrypted MNIST handwritten digit dataset revealed that models trained on this dataset have an accuracy of around 80%. It also demonstrated that the model trained using one secret key does not work with other secret keys or the original dataset; the prediction accuracy plummeted to less than 10%. As a result, malicious users who do not know the secret keys will find the model inefficient, and it may be difficult to manipulate or change the prediction results.","PeriodicalId":130986,"journal":{"name":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Protection of Deep Learning Visual Features on ECB Encrypted Images\",\"authors\":\"Kasidit Chunhachatchawhankhun, Prarinya Siritanawan, Karin Sumongkayothin, K. Kotani\",\"doi\":\"10.1109/KSE53942.2021.9648821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we demonstrate that images encrypted with Advanced Encryption Standard (AES) in Electronic Code Book (ECB) mode retain some local properties of the original images that Deep Neural Networks (DNNs) can detect these properties and perform classification tasks on this encrypted data. The experiment with the ECB encrypted MNIST handwritten digit dataset revealed that models trained on this dataset have an accuracy of around 80%. It also demonstrated that the model trained using one secret key does not work with other secret keys or the original dataset; the prediction accuracy plummeted to less than 10%. As a result, malicious users who do not know the secret keys will find the model inefficient, and it may be difficult to manipulate or change the prediction results.\",\"PeriodicalId\":130986,\"journal\":{\"name\":\"2021 13th International Conference on Knowledge and Systems Engineering (KSE)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Knowledge and Systems Engineering (KSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE53942.2021.9648821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE53942.2021.9648821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了在电子码本(ECB)模式下使用高级加密标准(AES)加密的图像保留了原始图像的一些局部属性,深度神经网络(dnn)可以检测到这些属性并对这些加密数据执行分类任务。用欧洲央行加密的MNIST手写数字数据集进行的实验表明,在该数据集上训练的模型的准确率约为80%。它还证明了使用一个密钥训练的模型不能与其他密钥或原始数据集一起工作;预测准确率骤降至10%以下。因此,不知道密钥的恶意用户会发现模型效率低下,并且可能难以操纵或更改预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating Protection of Deep Learning Visual Features on ECB Encrypted Images
In this paper, we demonstrate that images encrypted with Advanced Encryption Standard (AES) in Electronic Code Book (ECB) mode retain some local properties of the original images that Deep Neural Networks (DNNs) can detect these properties and perform classification tasks on this encrypted data. The experiment with the ECB encrypted MNIST handwritten digit dataset revealed that models trained on this dataset have an accuracy of around 80%. It also demonstrated that the model trained using one secret key does not work with other secret keys or the original dataset; the prediction accuracy plummeted to less than 10%. As a result, malicious users who do not know the secret keys will find the model inefficient, and it may be difficult to manipulate or change the prediction results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信