动态数据流中频繁模式发现的负载可控挖掘系统

K. Jea, Chao-Wei Li, Chih-Wei Hsu, Ru-Ping Lin, S. Yen
{"title":"动态数据流中频繁模式发现的负载可控挖掘系统","authors":"K. Jea, Chao-Wei Li, Chih-Wei Hsu, Ru-Ping Lin, S. Yen","doi":"10.1109/ICMLC.2010.5580798","DOIUrl":null,"url":null,"abstract":"In many applications, data-stream sources are prone to dramatic spikes in volume, which necessitates load shedding for data-stream processing systems. In this research, we study the load-shedding problem for frequent-pattern discovery in transactional data streams. A load-controllable mining system with an ε-deficient mining algorithm and three dedicated load-shedding schemes is proposed. When the system is overloaded, a load-shedding scheme is executed to prune a fraction of unprocessed data. From the experimental result, we find that the strategies of load shedding can indeed lighten the system workload while preserving the mining accuracy at an acceptable level.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A load-controllable mining system for frequent-pattern discovery in dynamic data streams\",\"authors\":\"K. Jea, Chao-Wei Li, Chih-Wei Hsu, Ru-Ping Lin, S. Yen\",\"doi\":\"10.1109/ICMLC.2010.5580798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many applications, data-stream sources are prone to dramatic spikes in volume, which necessitates load shedding for data-stream processing systems. In this research, we study the load-shedding problem for frequent-pattern discovery in transactional data streams. A load-controllable mining system with an ε-deficient mining algorithm and three dedicated load-shedding schemes is proposed. When the system is overloaded, a load-shedding scheme is executed to prune a fraction of unprocessed data. From the experimental result, we find that the strategies of load shedding can indeed lighten the system workload while preserving the mining accuracy at an acceptable level.\",\"PeriodicalId\":126080,\"journal\":{\"name\":\"2010 International Conference on Machine Learning and Cybernetics\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.5580798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在许多应用程序中,数据流源的容量容易出现急剧的峰值,这就需要为数据流处理系统减少负载。在本研究中,我们研究了事务性数据流中频繁模式发现的负载消减问题。提出了一种具有ε-缺陷挖掘算法和三种专用减载方案的负载可控挖掘系统。当系统过载时,将执行一个减载方案来减少一部分未处理的数据。实验结果表明,减载策略确实可以减轻系统工作量,同时使挖掘精度保持在可接受的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A load-controllable mining system for frequent-pattern discovery in dynamic data streams
In many applications, data-stream sources are prone to dramatic spikes in volume, which necessitates load shedding for data-stream processing systems. In this research, we study the load-shedding problem for frequent-pattern discovery in transactional data streams. A load-controllable mining system with an ε-deficient mining algorithm and three dedicated load-shedding schemes is proposed. When the system is overloaded, a load-shedding scheme is executed to prune a fraction of unprocessed data. From the experimental result, we find that the strategies of load shedding can indeed lighten the system workload while preserving the mining accuracy at an acceptable level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信