基于SSVEP的bci精确周期空间滤波

KIRAN KUMAR G R, R. Machireddy
{"title":"基于SSVEP的bci精确周期空间滤波","authors":"KIRAN KUMAR G R, R. Machireddy","doi":"10.1109/CW.2018.00050","DOIUrl":null,"url":null,"abstract":"This study introduces a novel, high accuracy, calibration less spatial filter for reliable steady-state visual evoked potential (SSVEP) extraction from noisy electroencephalogram (EEG) data. The proposed method, exactly periodic subspace decomposition (EPSD), utilises the periodic properties of the SSVEP components to achieve a robust spatial filter for SSVEP extraction. It tries to extract the SSVEP components by projecting the EEG data onto a subspace where only the target signal components are retained. The performance of the method was tested on an SSVEP dataset obtained from ten subjects and compared with common SSVEP spatial filtering and detection techniques. The results obtained from the study shows that EPSD consistently provides a significant improvement in detection performance than other SSVEP spatial filters used in brain-computer interface (BCI) applications.","PeriodicalId":388539,"journal":{"name":"2018 International Conference on Cyberworlds (CW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exactly Periodic Spatial Filter for SSVEP Based BCIs\",\"authors\":\"KIRAN KUMAR G R, R. Machireddy\",\"doi\":\"10.1109/CW.2018.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a novel, high accuracy, calibration less spatial filter for reliable steady-state visual evoked potential (SSVEP) extraction from noisy electroencephalogram (EEG) data. The proposed method, exactly periodic subspace decomposition (EPSD), utilises the periodic properties of the SSVEP components to achieve a robust spatial filter for SSVEP extraction. It tries to extract the SSVEP components by projecting the EEG data onto a subspace where only the target signal components are retained. The performance of the method was tested on an SSVEP dataset obtained from ten subjects and compared with common SSVEP spatial filtering and detection techniques. The results obtained from the study shows that EPSD consistently provides a significant improvement in detection performance than other SSVEP spatial filters used in brain-computer interface (BCI) applications.\",\"PeriodicalId\":388539,\"journal\":{\"name\":\"2018 International Conference on Cyberworlds (CW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Cyberworlds (CW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2018.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2018.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的、高精度的、无需校准的空间滤波方法,用于从噪声脑电图(EEG)数据中可靠地提取稳态视觉诱发电位。所提出的精确周期子空间分解(EPSD)方法利用SSVEP分量的周期特性实现了用于SSVEP提取的鲁棒空间滤波器。它试图通过将EEG数据投影到只保留目标信号分量的子空间来提取SSVEP分量。在10个受试者的SSVEP数据集上测试了该方法的性能,并与常用的SSVEP空间滤波和检测技术进行了比较。研究结果表明,EPSD在脑机接口(BCI)应用中比其他SSVEP空间滤波器的检测性能有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exactly Periodic Spatial Filter for SSVEP Based BCIs
This study introduces a novel, high accuracy, calibration less spatial filter for reliable steady-state visual evoked potential (SSVEP) extraction from noisy electroencephalogram (EEG) data. The proposed method, exactly periodic subspace decomposition (EPSD), utilises the periodic properties of the SSVEP components to achieve a robust spatial filter for SSVEP extraction. It tries to extract the SSVEP components by projecting the EEG data onto a subspace where only the target signal components are retained. The performance of the method was tested on an SSVEP dataset obtained from ten subjects and compared with common SSVEP spatial filtering and detection techniques. The results obtained from the study shows that EPSD consistently provides a significant improvement in detection performance than other SSVEP spatial filters used in brain-computer interface (BCI) applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信