Jairo Villegas G., Jorge Castano B., Javier Gil G., Andrei Gonzalez G.
{"title":"用有限体积法求解双域模型","authors":"Jairo Villegas G., Jorge Castano B., Javier Gil G., Andrei Gonzalez G.","doi":"10.12988/ijma.2016.512310","DOIUrl":null,"url":null,"abstract":"In this paper we consider cardiac electrical activity through bidomain model, to describe the electrical behavior of cardiac tissue, based on current flow, electric potential distribution and conservation of charge. So we use the finite volume scheme built on rectangular meshes. Discretizing will focus on existing algorithms for elliptic and parabolic equations, with convergence guaranteed by the classical theory.","PeriodicalId":431531,"journal":{"name":"International Journal of Mathematical Analysis","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bidomain model solution using the finite volume method\",\"authors\":\"Jairo Villegas G., Jorge Castano B., Javier Gil G., Andrei Gonzalez G.\",\"doi\":\"10.12988/ijma.2016.512310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider cardiac electrical activity through bidomain model, to describe the electrical behavior of cardiac tissue, based on current flow, electric potential distribution and conservation of charge. So we use the finite volume scheme built on rectangular meshes. Discretizing will focus on existing algorithms for elliptic and parabolic equations, with convergence guaranteed by the classical theory.\",\"PeriodicalId\":431531,\"journal\":{\"name\":\"International Journal of Mathematical Analysis\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/ijma.2016.512310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/ijma.2016.512310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bidomain model solution using the finite volume method
In this paper we consider cardiac electrical activity through bidomain model, to describe the electrical behavior of cardiac tissue, based on current flow, electric potential distribution and conservation of charge. So we use the finite volume scheme built on rectangular meshes. Discretizing will focus on existing algorithms for elliptic and parabolic equations, with convergence guaranteed by the classical theory.