自适应全纯嵌入潮流方法的有效切入点

A. C. Santos Junior, F. Freitas, L. Fernandes
{"title":"自适应全纯嵌入潮流方法的有效切入点","authors":"A. C. Santos Junior, F. Freitas, L. Fernandes","doi":"10.1109/WCNPS.2018.8604381","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach for accelerating the convergence runtime of a modified Holomorphic Embedding Load-Flow Method (HELM). In this adaptive HELM it is not used a flat start, nor an aleatory Initial Guess, but a previous starting solution provided by an iterative method based on Newton Krylov subspace. It is proposed, to improve this Adaptive HELM-based strategy, applying the use of the BiCGStab (Bi-Conjugate Gradient Stabilized) method, preconditioning, incomplete LU factorization, and reordering strategy. The goal is to optimize this previous starting solution to assist Adaptive HELM methods for getting the final solution in the fastest way. The results obtained are also compared with the traditional NR-method with flat start, an assisted NR-method, and the original HELM.","PeriodicalId":148750,"journal":{"name":"2018 Workshop on Communication Networks and Power Systems (WCNPS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Efficient Starting Point to Adaptive Holomorphic Embedding Power Flow Methods\",\"authors\":\"A. C. Santos Junior, F. Freitas, L. Fernandes\",\"doi\":\"10.1109/WCNPS.2018.8604381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach for accelerating the convergence runtime of a modified Holomorphic Embedding Load-Flow Method (HELM). In this adaptive HELM it is not used a flat start, nor an aleatory Initial Guess, but a previous starting solution provided by an iterative method based on Newton Krylov subspace. It is proposed, to improve this Adaptive HELM-based strategy, applying the use of the BiCGStab (Bi-Conjugate Gradient Stabilized) method, preconditioning, incomplete LU factorization, and reordering strategy. The goal is to optimize this previous starting solution to assist Adaptive HELM methods for getting the final solution in the fastest way. The results obtained are also compared with the traditional NR-method with flat start, an assisted NR-method, and the original HELM.\",\"PeriodicalId\":148750,\"journal\":{\"name\":\"2018 Workshop on Communication Networks and Power Systems (WCNPS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Workshop on Communication Networks and Power Systems (WCNPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNPS.2018.8604381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Workshop on Communication Networks and Power Systems (WCNPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNPS.2018.8604381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种改进的全纯嵌入负载流法(HELM)的收敛速度加快的新方法。在此自适应HELM中,不采用平面启动,也不采用随机初始猜测,而是采用基于Newton Krylov子空间的迭代方法提供的先前启动解。为了改进这种基于自适应helm的策略,提出了使用BiCGStab(双共轭梯度稳定)方法、预处理、不完全LU分解和重排序策略。目标是优化之前的起始解,以帮助自适应HELM方法以最快的方式获得最终解。并将所得结果与传统的平启动核磁共振法、辅助核磁共振法和原HELM法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Starting Point to Adaptive Holomorphic Embedding Power Flow Methods
This paper proposes a new approach for accelerating the convergence runtime of a modified Holomorphic Embedding Load-Flow Method (HELM). In this adaptive HELM it is not used a flat start, nor an aleatory Initial Guess, but a previous starting solution provided by an iterative method based on Newton Krylov subspace. It is proposed, to improve this Adaptive HELM-based strategy, applying the use of the BiCGStab (Bi-Conjugate Gradient Stabilized) method, preconditioning, incomplete LU factorization, and reordering strategy. The goal is to optimize this previous starting solution to assist Adaptive HELM methods for getting the final solution in the fastest way. The results obtained are also compared with the traditional NR-method with flat start, an assisted NR-method, and the original HELM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信