热退火和溶剂蒸汽退火对基于小分子的有机太阳能电池共混形态的影响(会议报告)

Álvaro Daniel Romero-Borja, Irving I. Caballero, O. Barbosa-García, J. Maldonado
{"title":"热退火和溶剂蒸汽退火对基于小分子的有机太阳能电池共混形态的影响(会议报告)","authors":"Álvaro Daniel Romero-Borja, Irving I. Caballero, O. Barbosa-García, J. Maldonado","doi":"10.1117/12.2322806","DOIUrl":null,"url":null,"abstract":"Here is presented the impact of thermal (TA) and solvent vapor annealing (SVA) post-treatments in bulk heterojunction (BHJ)-film formation of OSCs based on DRCN5T small molecule (based on oligothiophenes [1]) as electron donor and [70]PCBM as electron acceptor, under the direct architecture ITO/PEDOT:PSS/DRCN5T:[70]PCBM/PFN/FM, where FM is an eutectic alloy composed of 32.5% Bi, 51% In and 16.5% Sn, that melt at 65 °C and is easily deposited as top electrode at low temperature (~ 90 °C) [2-4]. The evolution of thin active layer formation treated by TA (120 oC/10 min), SVA (in chloroform/60 s) and the combination TA+SVA was studied by atomic force microscopy (AFM) in phase contrast mode in order to determine the size domains for each post-treatment (TA, SVA or TA+SVA). The results show domains up to 500 nm wide for active layers without further post-treatment and the PCE achieved for devices fabricated with these active layers was 2.15%. On the other hand, both TA and SVA post-treatments show domains in the range of 100 to 150 nm wide as maximum, which is favorable for an efficient transport of electronic species. The PCEs for the devices were 4.96 and 4.91% for active layers treated with TA and SVA, respectively. Finally, devices with active layers treated by the combination of TA+SVA reached PCEs of 7.63 %. \n\n\nReferences\n[1] B. Kan et al, J. Am. Chem. Soc. 2015, 137, 3886-3893.\n[2] E. Perez-Gutierrez, et al., ACS Appl. Mater. Interfaces 2016, 8, 28763.\n[3] D. Romero-Borja, et al., Synth. Met. 2015, 200, 91-98. \n[4] D. Barreiro-Arguelles et al., Solar Energy, accepted (2018).\n\n\nAcknowledgements: Ce-MIE-Sol 207450/27, CONACyT-SENER 24575 and CONACyT 281164 (LNMG) Mexico.","PeriodicalId":122801,"journal":{"name":"Organic, Hybrid, and Perovskite Photovoltaics XIX","volume":"17 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of thermal and solvent vapor annealing in blend morphology of organic solar cells based on small molecules (Conference Presentation)\",\"authors\":\"Álvaro Daniel Romero-Borja, Irving I. Caballero, O. Barbosa-García, J. Maldonado\",\"doi\":\"10.1117/12.2322806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here is presented the impact of thermal (TA) and solvent vapor annealing (SVA) post-treatments in bulk heterojunction (BHJ)-film formation of OSCs based on DRCN5T small molecule (based on oligothiophenes [1]) as electron donor and [70]PCBM as electron acceptor, under the direct architecture ITO/PEDOT:PSS/DRCN5T:[70]PCBM/PFN/FM, where FM is an eutectic alloy composed of 32.5% Bi, 51% In and 16.5% Sn, that melt at 65 °C and is easily deposited as top electrode at low temperature (~ 90 °C) [2-4]. The evolution of thin active layer formation treated by TA (120 oC/10 min), SVA (in chloroform/60 s) and the combination TA+SVA was studied by atomic force microscopy (AFM) in phase contrast mode in order to determine the size domains for each post-treatment (TA, SVA or TA+SVA). The results show domains up to 500 nm wide for active layers without further post-treatment and the PCE achieved for devices fabricated with these active layers was 2.15%. On the other hand, both TA and SVA post-treatments show domains in the range of 100 to 150 nm wide as maximum, which is favorable for an efficient transport of electronic species. The PCEs for the devices were 4.96 and 4.91% for active layers treated with TA and SVA, respectively. Finally, devices with active layers treated by the combination of TA+SVA reached PCEs of 7.63 %. \\n\\n\\nReferences\\n[1] B. Kan et al, J. Am. Chem. Soc. 2015, 137, 3886-3893.\\n[2] E. Perez-Gutierrez, et al., ACS Appl. Mater. Interfaces 2016, 8, 28763.\\n[3] D. Romero-Borja, et al., Synth. Met. 2015, 200, 91-98. \\n[4] D. Barreiro-Arguelles et al., Solar Energy, accepted (2018).\\n\\n\\nAcknowledgements: Ce-MIE-Sol 207450/27, CONACyT-SENER 24575 and CONACyT 281164 (LNMG) Mexico.\",\"PeriodicalId\":122801,\"journal\":{\"name\":\"Organic, Hybrid, and Perovskite Photovoltaics XIX\",\"volume\":\"17 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic, Hybrid, and Perovskite Photovoltaics XIX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2322806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic, Hybrid, and Perovskite Photovoltaics XIX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2322806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这里提出了热的影响(TA)和溶剂蒸汽退火(上海广电)后工序散装异质结(BHJ)膜的形成基于DRCN5T osc小分子(基于oligothiophenes[1])作为电子供体和[70]PCBM作为电子受体,直接架构ITO / PEDOT: PSS / DRCN5T: [70] PCBM / PFN / FM调频是Bi共晶合金组成的32.5%,51%和16.5%的锡、融化在65°C和很容易沉积上电极低温(~ 90°C)[2 - 4]。采用原子力显微镜(AFM)相对比研究了TA(120℃/10 min)、SVA(氯仿/60 s)和TA+SVA联合处理后薄活性层形成的演变,以确定每种后处理(TA、SVA或TA+SVA)的尺寸域。结果表明,未经进一步后处理的有源层的畴宽可达500 nm,用这些有源层制造的器件的PCE为2.15%。另一方面,TA和SVA后处理均显示出最大宽度为100 ~ 150nm的结构域,这有利于电子物质的有效输运。经TA和SVA处理的活性层的pce分别为4.96和4.91%。最后,经TA+SVA联合处理的有源层器件的pce达到7.63%。[参考文献]B. Kan等,J. Am。化学。生态学报,2015,37 (3):386 - 393E. Perez-Gutierrez, et al., ACS苹果公司。板牙。接口2016,8,28763.[3]D. Romero-Borja等,合成人。[j] .医学学报,2015,(2):91-98。[10] D. Barreiro-Arguelles et al.,太阳能,已接受(2018)。感谢:Ce-MIE-Sol 207450/27, CONACyT- sener 24575和CONACyT 281164 (LNMG)墨西哥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of thermal and solvent vapor annealing in blend morphology of organic solar cells based on small molecules (Conference Presentation)
Here is presented the impact of thermal (TA) and solvent vapor annealing (SVA) post-treatments in bulk heterojunction (BHJ)-film formation of OSCs based on DRCN5T small molecule (based on oligothiophenes [1]) as electron donor and [70]PCBM as electron acceptor, under the direct architecture ITO/PEDOT:PSS/DRCN5T:[70]PCBM/PFN/FM, where FM is an eutectic alloy composed of 32.5% Bi, 51% In and 16.5% Sn, that melt at 65 °C and is easily deposited as top electrode at low temperature (~ 90 °C) [2-4]. The evolution of thin active layer formation treated by TA (120 oC/10 min), SVA (in chloroform/60 s) and the combination TA+SVA was studied by atomic force microscopy (AFM) in phase contrast mode in order to determine the size domains for each post-treatment (TA, SVA or TA+SVA). The results show domains up to 500 nm wide for active layers without further post-treatment and the PCE achieved for devices fabricated with these active layers was 2.15%. On the other hand, both TA and SVA post-treatments show domains in the range of 100 to 150 nm wide as maximum, which is favorable for an efficient transport of electronic species. The PCEs for the devices were 4.96 and 4.91% for active layers treated with TA and SVA, respectively. Finally, devices with active layers treated by the combination of TA+SVA reached PCEs of 7.63 %. References [1] B. Kan et al, J. Am. Chem. Soc. 2015, 137, 3886-3893. [2] E. Perez-Gutierrez, et al., ACS Appl. Mater. Interfaces 2016, 8, 28763. [3] D. Romero-Borja, et al., Synth. Met. 2015, 200, 91-98. [4] D. Barreiro-Arguelles et al., Solar Energy, accepted (2018). Acknowledgements: Ce-MIE-Sol 207450/27, CONACyT-SENER 24575 and CONACyT 281164 (LNMG) Mexico.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信