{"title":"基于直方图近似的结构化概率模型主动学习","authors":"Q. Sun, A. Laddha, Dhruv Batra","doi":"10.1109/CVPR.2015.7298984","DOIUrl":null,"url":null,"abstract":"This paper studies active learning in structured probabilistic models such as Conditional Random Fields (CRFs). This is a challenging problem because unlike unstructured prediction problems such as binary or multi-class classification, structured prediction problems involve a distribution with an exponentially-large support, for instance, over the space of all possible segmentations of an image. Thus, the entropy of such models is typically intractable to compute. We propose a crude yet surprisingly effective histogram approximation to the Gibbs distribution, which replaces the exponentially-large support with a coarsened distribution that may be viewed as a histogram over M bins. We show that our approach outperforms a number of baselines and results in a 90%-reduction in the number of annotations needed to achieve nearly the same accuracy as learning from the entire dataset.","PeriodicalId":444472,"journal":{"name":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Active learning for structured probabilistic models with histogram approximation\",\"authors\":\"Q. Sun, A. Laddha, Dhruv Batra\",\"doi\":\"10.1109/CVPR.2015.7298984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies active learning in structured probabilistic models such as Conditional Random Fields (CRFs). This is a challenging problem because unlike unstructured prediction problems such as binary or multi-class classification, structured prediction problems involve a distribution with an exponentially-large support, for instance, over the space of all possible segmentations of an image. Thus, the entropy of such models is typically intractable to compute. We propose a crude yet surprisingly effective histogram approximation to the Gibbs distribution, which replaces the exponentially-large support with a coarsened distribution that may be viewed as a histogram over M bins. We show that our approach outperforms a number of baselines and results in a 90%-reduction in the number of annotations needed to achieve nearly the same accuracy as learning from the entire dataset.\",\"PeriodicalId\":444472,\"journal\":{\"name\":\"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2015.7298984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2015.7298984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Active learning for structured probabilistic models with histogram approximation
This paper studies active learning in structured probabilistic models such as Conditional Random Fields (CRFs). This is a challenging problem because unlike unstructured prediction problems such as binary or multi-class classification, structured prediction problems involve a distribution with an exponentially-large support, for instance, over the space of all possible segmentations of an image. Thus, the entropy of such models is typically intractable to compute. We propose a crude yet surprisingly effective histogram approximation to the Gibbs distribution, which replaces the exponentially-large support with a coarsened distribution that may be viewed as a histogram over M bins. We show that our approach outperforms a number of baselines and results in a 90%-reduction in the number of annotations needed to achieve nearly the same accuracy as learning from the entire dataset.