利用三维Hermite多项式估计光流的广义运动模型

Hongche Liu, T. Hong, M. Herman, R. Chellappa
{"title":"利用三维Hermite多项式估计光流的广义运动模型","authors":"Hongche Liu, T. Hong, M. Herman, R. Chellappa","doi":"10.1109/ICPR.1994.576299","DOIUrl":null,"url":null,"abstract":"Classic optical flow algorithms assume local image translational motion and apply some primitive image smoothing. Recent studies have taken two separate approaches toward improving accuracy: the application of spatio-temporal filtering schemes and the use of generalized motion models such as the affine model. Each has achieved improvement in its specialized situations. We analyze the interdependency between them and propose a unified theory. The generalized motion we adopt models arbitrary 3D steady motion. Under perspective projection, we derive an image motion equation that describes the spatio-temporal relation in an image sequence, thus making 3D spatio-temporal filtering possible. Hence we establish a theory of Hermite polynomial differentiation filters, whose orthogonality and Gaussian derivative properties ensure numerical stability. The use of higher order motion constraint equations to accommodate more complex motion is justified by the algorithm's reliable performance, as demonstrated by evaluating our algorithm in the scheme established by Barron, et al. (1994).","PeriodicalId":312019,"journal":{"name":"Proceedings of 12th International Conference on Pattern Recognition","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A generalized motion model for estimating optical flow using 3-D Hermite polynomials\",\"authors\":\"Hongche Liu, T. Hong, M. Herman, R. Chellappa\",\"doi\":\"10.1109/ICPR.1994.576299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classic optical flow algorithms assume local image translational motion and apply some primitive image smoothing. Recent studies have taken two separate approaches toward improving accuracy: the application of spatio-temporal filtering schemes and the use of generalized motion models such as the affine model. Each has achieved improvement in its specialized situations. We analyze the interdependency between them and propose a unified theory. The generalized motion we adopt models arbitrary 3D steady motion. Under perspective projection, we derive an image motion equation that describes the spatio-temporal relation in an image sequence, thus making 3D spatio-temporal filtering possible. Hence we establish a theory of Hermite polynomial differentiation filters, whose orthogonality and Gaussian derivative properties ensure numerical stability. The use of higher order motion constraint equations to accommodate more complex motion is justified by the algorithm's reliable performance, as demonstrated by evaluating our algorithm in the scheme established by Barron, et al. (1994).\",\"PeriodicalId\":312019,\"journal\":{\"name\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 12th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1994.576299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 12th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

经典的光流算法假设图像有局部平移运动,并对图像进行一些原始平滑处理。最近的研究采取了两种不同的方法来提高精度:应用时空滤波方案和使用广义运动模型,如仿射模型。每个国家都在其专业情况下取得了进步。我们分析了它们之间的相互依存关系,并提出了一个统一的理论。广义运动采用任意三维稳定运动模型。在透视投影下,我们推导了一个图像运动方程来描述图像序列中的时空关系,从而使三维时空滤波成为可能。因此,我们建立了一个Hermite多项式微分滤波器理论,它的正交性和高斯导数性质保证了数值的稳定性。算法的可靠性能证明了使用高阶运动约束方程来适应更复杂的运动是合理的,正如在Barron等人(1994)建立的方案中评估我们的算法所证明的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized motion model for estimating optical flow using 3-D Hermite polynomials
Classic optical flow algorithms assume local image translational motion and apply some primitive image smoothing. Recent studies have taken two separate approaches toward improving accuracy: the application of spatio-temporal filtering schemes and the use of generalized motion models such as the affine model. Each has achieved improvement in its specialized situations. We analyze the interdependency between them and propose a unified theory. The generalized motion we adopt models arbitrary 3D steady motion. Under perspective projection, we derive an image motion equation that describes the spatio-temporal relation in an image sequence, thus making 3D spatio-temporal filtering possible. Hence we establish a theory of Hermite polynomial differentiation filters, whose orthogonality and Gaussian derivative properties ensure numerical stability. The use of higher order motion constraint equations to accommodate more complex motion is justified by the algorithm's reliable performance, as demonstrated by evaluating our algorithm in the scheme established by Barron, et al. (1994).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信