支持向量机参数对死区系统建模的影响分析

N. Kabaoğlu, R. O. Kabaoglu
{"title":"支持向量机参数对死区系统建模的影响分析","authors":"N. Kabaoğlu, R. O. Kabaoglu","doi":"10.5152/iujeee.2018.1801","DOIUrl":null,"url":null,"abstract":"Modeling a dead-time system is a common issue in engineering applications. To address this issue, existing research has employed neural networks and fuzzy logic-based intelligent systems. Herein, a dead-time system modeled with the aid of support vector machine regression, which has a good generalization feature, was investigated. The performance of the method proposed herein was examined with different parameters in linear and nonlinear dead-time systems.","PeriodicalId":256344,"journal":{"name":"Istanbul University - Journal of Electrical and Electronics Engineering","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Analysis of the Effects of SVM Parameters on the Dead-Time System Modeling\",\"authors\":\"N. Kabaoğlu, R. O. Kabaoglu\",\"doi\":\"10.5152/iujeee.2018.1801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling a dead-time system is a common issue in engineering applications. To address this issue, existing research has employed neural networks and fuzzy logic-based intelligent systems. Herein, a dead-time system modeled with the aid of support vector machine regression, which has a good generalization feature, was investigated. The performance of the method proposed herein was examined with different parameters in linear and nonlinear dead-time systems.\",\"PeriodicalId\":256344,\"journal\":{\"name\":\"Istanbul University - Journal of Electrical and Electronics Engineering\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Istanbul University - Journal of Electrical and Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5152/iujeee.2018.1801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Istanbul University - Journal of Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5152/iujeee.2018.1801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在工程应用中,对死时系统进行建模是一个常见的问题。为了解决这个问题,现有的研究已经采用了基于神经网络和模糊逻辑的智能系统。本文研究了一种具有良好泛化特性的基于支持向量机回归模型的死区系统。在线性和非线性死时系统中,用不同参数对该方法进行了性能测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Analysis of the Effects of SVM Parameters on the Dead-Time System Modeling
Modeling a dead-time system is a common issue in engineering applications. To address this issue, existing research has employed neural networks and fuzzy logic-based intelligent systems. Herein, a dead-time system modeled with the aid of support vector machine regression, which has a good generalization feature, was investigated. The performance of the method proposed herein was examined with different parameters in linear and nonlinear dead-time systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信