{"title":"分析元模型产品线","authors":"E. Guerra, J. Lara, M. Chechik, Rick Salay","doi":"10.1145/3276604.3276609","DOIUrl":null,"url":null,"abstract":"Model-driven engineering advocates the use of models to describe and automate many software development tasks. The syntax of modelling languages is defined by meta-models, making them essential artefacts. A combination of product line engineering methods and meta-models has been proposed to enable specification of modelling language variants, e.g., to describe a range of systems. However, there is a lack of techniques for ensuring syntactic correctness of all meta-models within a family (including their OCL constraints), and semantic correctness related to properties of individual instances of the different variants. The absence of verification methods at the product-line level can cause synthesis of ill-formed meta-models and problematic feature combinations whose effect at the instance level may go unnoticed. To attack this problem, we propose an approach to lifting both the meta-model syntax checking and the satisfiability checking of properties of individual meta-model instances, to the product-line level. We validate the approach via a prototype tool called Merlin, and report on several experiments that show the advantages of our method w.r.t. an enumerative analysis approach.","PeriodicalId":117525,"journal":{"name":"Proceedings of the 11th ACM SIGPLAN International Conference on Software Language Engineering","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Analysing meta-model product lines\",\"authors\":\"E. Guerra, J. Lara, M. Chechik, Rick Salay\",\"doi\":\"10.1145/3276604.3276609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-driven engineering advocates the use of models to describe and automate many software development tasks. The syntax of modelling languages is defined by meta-models, making them essential artefacts. A combination of product line engineering methods and meta-models has been proposed to enable specification of modelling language variants, e.g., to describe a range of systems. However, there is a lack of techniques for ensuring syntactic correctness of all meta-models within a family (including their OCL constraints), and semantic correctness related to properties of individual instances of the different variants. The absence of verification methods at the product-line level can cause synthesis of ill-formed meta-models and problematic feature combinations whose effect at the instance level may go unnoticed. To attack this problem, we propose an approach to lifting both the meta-model syntax checking and the satisfiability checking of properties of individual meta-model instances, to the product-line level. We validate the approach via a prototype tool called Merlin, and report on several experiments that show the advantages of our method w.r.t. an enumerative analysis approach.\",\"PeriodicalId\":117525,\"journal\":{\"name\":\"Proceedings of the 11th ACM SIGPLAN International Conference on Software Language Engineering\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM SIGPLAN International Conference on Software Language Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3276604.3276609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM SIGPLAN International Conference on Software Language Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3276604.3276609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model-driven engineering advocates the use of models to describe and automate many software development tasks. The syntax of modelling languages is defined by meta-models, making them essential artefacts. A combination of product line engineering methods and meta-models has been proposed to enable specification of modelling language variants, e.g., to describe a range of systems. However, there is a lack of techniques for ensuring syntactic correctness of all meta-models within a family (including their OCL constraints), and semantic correctness related to properties of individual instances of the different variants. The absence of verification methods at the product-line level can cause synthesis of ill-formed meta-models and problematic feature combinations whose effect at the instance level may go unnoticed. To attack this problem, we propose an approach to lifting both the meta-model syntax checking and the satisfiability checking of properties of individual meta-model instances, to the product-line level. We validate the approach via a prototype tool called Merlin, and report on several experiments that show the advantages of our method w.r.t. an enumerative analysis approach.