自动缩放边缘云用于网络切片

EmadelDin A. Mazied, Dimitrios S. Nikolopoulos, Y. Hanafy, S. Midkiff
{"title":"自动缩放边缘云用于网络切片","authors":"EmadelDin A. Mazied, Dimitrios S. Nikolopoulos, Y. Hanafy, S. Midkiff","doi":"10.3389/fhpcp.2023.1167162","DOIUrl":null,"url":null,"abstract":"This paper presents a study on resource control for autoscaling virtual radio access networks (RAN slices) in next-generation wireless networks. The dynamic instantiation and termination of on-demand RAN slices require efficient autoscaling of computational resources at the edge. Autoscaling involves vertical scaling (VS) and horizontal scaling (HS) to adapt resource allocation based on demand variations. However, the strict processing time requirements for RAN slices pose challenges when instantiating new containers. To address this issue, we propose removing resource limits from slice configuration and leveraging the decision-making capabilities of a centralized slicing controller. We introduce a resource control agent (RC) that determines resource limits as the number of computing resources packed into containers, aiming to minimize deployment costs while maintaining processing time below a threshold. The RAN slicing workload is modeled using the Low-Density Parity Check (LDPC) decoding algorithm, known for its stochastic demands. We formulate the problem as a variant of the stochastic bin packing problem (SBPP) to satisfy the random variations in radio workload. By employing chance-constrained programming, we approach the SBPP resource control (S-RC) problem. Our numerical evaluation demonstrates that S-RC maintains the processing time requirement with a higher probability compared to configuring RAN slices with predefined limits, although it introduces a 45% overall average cost overhead.","PeriodicalId":399190,"journal":{"name":"Frontiers in High Performance Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Auto-scaling edge cloud for network slicing\",\"authors\":\"EmadelDin A. Mazied, Dimitrios S. Nikolopoulos, Y. Hanafy, S. Midkiff\",\"doi\":\"10.3389/fhpcp.2023.1167162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study on resource control for autoscaling virtual radio access networks (RAN slices) in next-generation wireless networks. The dynamic instantiation and termination of on-demand RAN slices require efficient autoscaling of computational resources at the edge. Autoscaling involves vertical scaling (VS) and horizontal scaling (HS) to adapt resource allocation based on demand variations. However, the strict processing time requirements for RAN slices pose challenges when instantiating new containers. To address this issue, we propose removing resource limits from slice configuration and leveraging the decision-making capabilities of a centralized slicing controller. We introduce a resource control agent (RC) that determines resource limits as the number of computing resources packed into containers, aiming to minimize deployment costs while maintaining processing time below a threshold. The RAN slicing workload is modeled using the Low-Density Parity Check (LDPC) decoding algorithm, known for its stochastic demands. We formulate the problem as a variant of the stochastic bin packing problem (SBPP) to satisfy the random variations in radio workload. By employing chance-constrained programming, we approach the SBPP resource control (S-RC) problem. Our numerical evaluation demonstrates that S-RC maintains the processing time requirement with a higher probability compared to configuring RAN slices with predefined limits, although it introduces a 45% overall average cost overhead.\",\"PeriodicalId\":399190,\"journal\":{\"name\":\"Frontiers in High Performance Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fhpcp.2023.1167162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fhpcp.2023.1167162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了下一代无线网络中自动缩放虚拟无线接入网(RAN切片)的资源控制问题。按需RAN切片的动态实例化和终止需要在边缘有效地自动缩放计算资源。自动缩放包括垂直缩放(VS)和水平缩放(HS),以适应基于需求变化的资源分配。然而,RAN片严格的处理时间要求在实例化新容器时带来了挑战。为了解决这个问题,我们建议从切片配置中去除资源限制,并利用集中式切片控制器的决策能力。我们引入了一个资源控制代理(RC),它将资源限制确定为打包到容器中的计算资源的数量,旨在最小化部署成本,同时将处理时间保持在阈值以下。RAN切片工作负载使用低密度奇偶校验(LDPC)解码算法建模,该算法以其随机需求而闻名。我们将该问题表述为随机装箱问题(SBPP)的一个变体,以满足无线电工作负荷的随机变化。利用机会约束规划方法,研究了SBPP资源控制问题。我们的数值评估表明,与配置具有预定义限制的RAN切片相比,S-RC保持处理时间需求的概率更高,尽管它引入了45%的总体平均成本开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto-scaling edge cloud for network slicing
This paper presents a study on resource control for autoscaling virtual radio access networks (RAN slices) in next-generation wireless networks. The dynamic instantiation and termination of on-demand RAN slices require efficient autoscaling of computational resources at the edge. Autoscaling involves vertical scaling (VS) and horizontal scaling (HS) to adapt resource allocation based on demand variations. However, the strict processing time requirements for RAN slices pose challenges when instantiating new containers. To address this issue, we propose removing resource limits from slice configuration and leveraging the decision-making capabilities of a centralized slicing controller. We introduce a resource control agent (RC) that determines resource limits as the number of computing resources packed into containers, aiming to minimize deployment costs while maintaining processing time below a threshold. The RAN slicing workload is modeled using the Low-Density Parity Check (LDPC) decoding algorithm, known for its stochastic demands. We formulate the problem as a variant of the stochastic bin packing problem (SBPP) to satisfy the random variations in radio workload. By employing chance-constrained programming, we approach the SBPP resource control (S-RC) problem. Our numerical evaluation demonstrates that S-RC maintains the processing time requirement with a higher probability compared to configuring RAN slices with predefined limits, although it introduces a 45% overall average cost overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信