GDL分类器的无监督学习

T. Hachaj, M. Ogiela
{"title":"GDL分类器的无监督学习","authors":"T. Hachaj, M. Ogiela","doi":"10.1109/IMIS.2014.22","DOIUrl":null,"url":null,"abstract":"GDL (Gesture Description Language) is a pattern recognition method that enables syntactic description and real time recognition of static body poses and movement sequences. The syntax of context free GDL script (GDLs) language is intuitive and easy to learn for new user, however so far GDLs rules had to be implemented without feedback of machine learning methods. In this paper we present proposition and initial evaluation of unsupervised method of GDL classifier learning that enables automatic generation of GDLs descriptions using specified features and sample movements recordings. New automatically generated GDLs are well understandable the same as manually defined descriptions. This property enables easy interpretation of obtained training results in contrast to the results from others popular pattern recognition methods.","PeriodicalId":345694,"journal":{"name":"2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Unsupervised Learning of GDL Classifier\",\"authors\":\"T. Hachaj, M. Ogiela\",\"doi\":\"10.1109/IMIS.2014.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GDL (Gesture Description Language) is a pattern recognition method that enables syntactic description and real time recognition of static body poses and movement sequences. The syntax of context free GDL script (GDLs) language is intuitive and easy to learn for new user, however so far GDLs rules had to be implemented without feedback of machine learning methods. In this paper we present proposition and initial evaluation of unsupervised method of GDL classifier learning that enables automatic generation of GDLs descriptions using specified features and sample movements recordings. New automatically generated GDLs are well understandable the same as manually defined descriptions. This property enables easy interpretation of obtained training results in contrast to the results from others popular pattern recognition methods.\",\"PeriodicalId\":345694,\"journal\":{\"name\":\"2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMIS.2014.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMIS.2014.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

GDL (Gesture Description Language,手势描述语言)是一种模式识别方法,能够对静态的身体姿势和运动序列进行语法描述和实时识别。无上下文GDL脚本(GDL)语言的语法直观,易于新用户学习,但到目前为止,GDL规则的实现没有机器学习方法的反馈。在本文中,我们提出了GDL分类器学习的无监督方法的命题和初步评估,该方法能够使用指定的特征和样本运动记录自动生成GDL描述。新的自动生成的gdl与手动定义的描述一样容易理解。与其他流行的模式识别方法的结果相比,该特性使获得的训练结果易于解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Learning of GDL Classifier
GDL (Gesture Description Language) is a pattern recognition method that enables syntactic description and real time recognition of static body poses and movement sequences. The syntax of context free GDL script (GDLs) language is intuitive and easy to learn for new user, however so far GDLs rules had to be implemented without feedback of machine learning methods. In this paper we present proposition and initial evaluation of unsupervised method of GDL classifier learning that enables automatic generation of GDLs descriptions using specified features and sample movements recordings. New automatically generated GDLs are well understandable the same as manually defined descriptions. This property enables easy interpretation of obtained training results in contrast to the results from others popular pattern recognition methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信