广义声荷载概念中滑移的处理

R. Lucklum, G. McHale
{"title":"广义声荷载概念中滑移的处理","authors":"R. Lucklum, G. McHale","doi":"10.1109/FREQ.2000.887327","DOIUrl":null,"url":null,"abstract":"The one-dimensional transmission-line model has been applied successfully for the description of the transduction mechanism of acoustic-wave-based microsensors, e.g.. In this model, the surface acoustic load acting at the interface between the acoustic device and the adjacent medium plays the dominant role and reflects changes in mass, density, or film thickness of a coating (gravimetric effects) as well as (visco-)elastic properties of the material (non-gravimetric effects). One important requirement of the transmission-line model is the continuity of particle displacement and stress at the interface. This has the disadvantage that it cannot allow for the existence of slip. This contribution introduces a new concept for the treatment of slip between an acoustic wave device and a contacting solid film or a contacting liquid. In this concept slip modifies the acoustic load acting at the surface of the sensor.","PeriodicalId":294110,"journal":{"name":"Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Treatment of slip in a generalized acoustic load concept\",\"authors\":\"R. Lucklum, G. McHale\",\"doi\":\"10.1109/FREQ.2000.887327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The one-dimensional transmission-line model has been applied successfully for the description of the transduction mechanism of acoustic-wave-based microsensors, e.g.. In this model, the surface acoustic load acting at the interface between the acoustic device and the adjacent medium plays the dominant role and reflects changes in mass, density, or film thickness of a coating (gravimetric effects) as well as (visco-)elastic properties of the material (non-gravimetric effects). One important requirement of the transmission-line model is the continuity of particle displacement and stress at the interface. This has the disadvantage that it cannot allow for the existence of slip. This contribution introduces a new concept for the treatment of slip between an acoustic wave device and a contacting solid film or a contacting liquid. In this concept slip modifies the acoustic load acting at the surface of the sensor.\",\"PeriodicalId\":294110,\"journal\":{\"name\":\"Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2000.887327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition (Cat. No.00CH37052)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2000.887327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

一维传输在线模型已成功地用于描述基于声波的微传感器的转导机制,如:在该模型中,作用于声学装置和邻近介质界面的表面声载荷起主导作用,反映了涂层的质量、密度或膜厚的变化(重力效应)以及材料的(粘)弹性特性(非重力效应)。传输在线模型的一个重要要求是颗粒位移和应力在界面处的连续性。这样做的缺点是不能考虑滑移的存在。这一贡献为处理声波装置与接触固体膜或接触液体之间的滑动引入了一个新概念。在这个概念中,滑移改变了作用在传感器表面的声载荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Treatment of slip in a generalized acoustic load concept
The one-dimensional transmission-line model has been applied successfully for the description of the transduction mechanism of acoustic-wave-based microsensors, e.g.. In this model, the surface acoustic load acting at the interface between the acoustic device and the adjacent medium plays the dominant role and reflects changes in mass, density, or film thickness of a coating (gravimetric effects) as well as (visco-)elastic properties of the material (non-gravimetric effects). One important requirement of the transmission-line model is the continuity of particle displacement and stress at the interface. This has the disadvantage that it cannot allow for the existence of slip. This contribution introduces a new concept for the treatment of slip between an acoustic wave device and a contacting solid film or a contacting liquid. In this concept slip modifies the acoustic load acting at the surface of the sensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信