用可逆偏微分算子的改进Adomian分解法求解双曲电报方程

Saleem Nasser Alomari, Yahya Qaid Hasan
{"title":"用可逆偏微分算子的改进Adomian分解法求解双曲电报方程","authors":"Saleem Nasser Alomari, Yahya Qaid Hasan","doi":"10.9734/arjom/2023/v19i9719","DOIUrl":null,"url":null,"abstract":"In this paper, a modified Adomian decomposition method (MADM) for solving the hyperbolic telegraph equation is proposed. The MADM introduces a new inverse partial differential operator that can speed up the convergence rate of the standard ADM. We also present a technique for converting the equation to a special case form, which makes the MADM easier to implement. The proposed method was tested on six different linear and nonlinear telegraph equations in one and two dimensions. The results show that the method is accurate and efficient for solving the telegraph equation.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving The Hyperbolic Telegraph Equation Using a Modified Adomian Decomposition Method with an Invertible Partial Differential Operator\",\"authors\":\"Saleem Nasser Alomari, Yahya Qaid Hasan\",\"doi\":\"10.9734/arjom/2023/v19i9719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a modified Adomian decomposition method (MADM) for solving the hyperbolic telegraph equation is proposed. The MADM introduces a new inverse partial differential operator that can speed up the convergence rate of the standard ADM. We also present a technique for converting the equation to a special case form, which makes the MADM easier to implement. The proposed method was tested on six different linear and nonlinear telegraph equations in one and two dimensions. The results show that the method is accurate and efficient for solving the telegraph equation.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2023/v19i9719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i9719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解双曲电报方程的改进Adomian分解方法。MADM引入了一个新的逆偏微分算子,可以加快标准adm的收敛速度。我们还提出了一种将方程转化为特殊形式的技术,使MADM更容易实现。对六个不同的一维和二维线性和非线性电报方程进行了测试。结果表明,该方法求解电报方程是准确、有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving The Hyperbolic Telegraph Equation Using a Modified Adomian Decomposition Method with an Invertible Partial Differential Operator
In this paper, a modified Adomian decomposition method (MADM) for solving the hyperbolic telegraph equation is proposed. The MADM introduces a new inverse partial differential operator that can speed up the convergence rate of the standard ADM. We also present a technique for converting the equation to a special case form, which makes the MADM easier to implement. The proposed method was tested on six different linear and nonlinear telegraph equations in one and two dimensions. The results show that the method is accurate and efficient for solving the telegraph equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信