毫升级声控生物制品处理平台

M. A. Faridi, Adnan Faqui Shahzad, A. Russom, M. Wiklund
{"title":"毫升级声控生物制品处理平台","authors":"M. A. Faridi, Adnan Faqui Shahzad, A. Russom, M. Wiklund","doi":"10.1115/ICNMM2018-7634","DOIUrl":null,"url":null,"abstract":"Bioparticles such as mammalian cells and bacteria can be manipulated directly or indirectly for multiple applications such as sample preparation for diagnostic applications mainly up-concentration, enrichment & separation as well as immunoassay development. There are various active and passive microfluidic particle manipulation techniques where Acoustophoresis is a powerful technique showing high cell viability. The use of disposable glass capillaries for acoustophoresis, instead of cleanroom fabricated glass-silicon chip can potentially bring down the cost factor substantially, aiding the realization of this technique for real-world diagnostic devices. Unlike available chips and capillary-based microfluidic devices, we report milliliter-scale platform able to accommodate 1ml of a sample for acoustophoresis based processing on a market available glass capillary. Although it is presented as a generic platform but as a demonstration we have shown that polystyrene suspending medium sample can be processed with trapping efficiency of 87% and the up-concentration factor of 10 times in a flow through manner i.e., at 35μl/min. For stationary volume accommodation, this platform practically offers 50 times more sample handling capacity than most of the microfluidic setups. Furthermore, we have also shown that with diluted blood (0.6%) in a flow-through manner, 82% of the white blood cells (WBCs) per ml could be kept trapped. This milliliter platform could potentially be utilized for assisting in sample preparation, plasma separation as well as a flow-through immunoassay assay development for clinical diagnostic applications.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Milliliter Scale Acoustophoresis Based Bioparticle Processing Platform\",\"authors\":\"M. A. Faridi, Adnan Faqui Shahzad, A. Russom, M. Wiklund\",\"doi\":\"10.1115/ICNMM2018-7634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioparticles such as mammalian cells and bacteria can be manipulated directly or indirectly for multiple applications such as sample preparation for diagnostic applications mainly up-concentration, enrichment & separation as well as immunoassay development. There are various active and passive microfluidic particle manipulation techniques where Acoustophoresis is a powerful technique showing high cell viability. The use of disposable glass capillaries for acoustophoresis, instead of cleanroom fabricated glass-silicon chip can potentially bring down the cost factor substantially, aiding the realization of this technique for real-world diagnostic devices. Unlike available chips and capillary-based microfluidic devices, we report milliliter-scale platform able to accommodate 1ml of a sample for acoustophoresis based processing on a market available glass capillary. Although it is presented as a generic platform but as a demonstration we have shown that polystyrene suspending medium sample can be processed with trapping efficiency of 87% and the up-concentration factor of 10 times in a flow through manner i.e., at 35μl/min. For stationary volume accommodation, this platform practically offers 50 times more sample handling capacity than most of the microfluidic setups. Furthermore, we have also shown that with diluted blood (0.6%) in a flow-through manner, 82% of the white blood cells (WBCs) per ml could be kept trapped. This milliliter platform could potentially be utilized for assisting in sample preparation, plasma separation as well as a flow-through immunoassay assay development for clinical diagnostic applications.\",\"PeriodicalId\":137208,\"journal\":{\"name\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICNMM2018-7634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物颗粒如哺乳动物细胞和细菌可以直接或间接操作多种应用,如用于诊断应用的样品制备,主要是提高浓度,富集和分离以及免疫分析开发。有各种各样的主动和被动微流控颗粒操作技术,其中声阻抗技术是一种强大的技术,具有很高的细胞存活率。使用一次性玻璃毛细管进行声阻抗,而不是洁净室制造的玻璃硅芯片,可以潜在地大大降低成本因素,有助于实现这种技术在现实世界的诊断设备。与现有的芯片和基于毛细管的微流控装置不同,我们报告了毫升级的平台,能够容纳1ml的样品,用于基于市场上可用的玻璃毛细管的声阻抗处理。虽然它是一个通用的平台,但作为一个示范,我们已经证明聚苯乙烯悬浮介质样品可以在35μl/min的流动方式下以87%的捕获效率和10倍的富集系数进行处理。对于固定体积调节,该平台实际上提供了比大多数微流体装置多50倍的样品处理能力。此外,我们还表明,以流动方式稀释血液(0.6%),每毫升82%的白细胞(wbc)可以被捕获。该毫升平台可用于协助样品制备,血浆分离以及用于临床诊断应用的流式免疫分析分析开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Milliliter Scale Acoustophoresis Based Bioparticle Processing Platform
Bioparticles such as mammalian cells and bacteria can be manipulated directly or indirectly for multiple applications such as sample preparation for diagnostic applications mainly up-concentration, enrichment & separation as well as immunoassay development. There are various active and passive microfluidic particle manipulation techniques where Acoustophoresis is a powerful technique showing high cell viability. The use of disposable glass capillaries for acoustophoresis, instead of cleanroom fabricated glass-silicon chip can potentially bring down the cost factor substantially, aiding the realization of this technique for real-world diagnostic devices. Unlike available chips and capillary-based microfluidic devices, we report milliliter-scale platform able to accommodate 1ml of a sample for acoustophoresis based processing on a market available glass capillary. Although it is presented as a generic platform but as a demonstration we have shown that polystyrene suspending medium sample can be processed with trapping efficiency of 87% and the up-concentration factor of 10 times in a flow through manner i.e., at 35μl/min. For stationary volume accommodation, this platform practically offers 50 times more sample handling capacity than most of the microfluidic setups. Furthermore, we have also shown that with diluted blood (0.6%) in a flow-through manner, 82% of the white blood cells (WBCs) per ml could be kept trapped. This milliliter platform could potentially be utilized for assisting in sample preparation, plasma separation as well as a flow-through immunoassay assay development for clinical diagnostic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信