{"title":"挖掘大数据,发现、提炼和推荐建筑设计理念","authors":"Mehdi Mirakhorli, Hong-Mei Chen, R. Kazman","doi":"10.1109/BIGDSE.2015.11","DOIUrl":null,"url":null,"abstract":"An architecture recommender system can help programmers make better design choices to address their architectural quality attribute concerns while doing their daily programming tasks. We mine big data to detect and extract a large set of architectural design concepts, such as design patterns, design tactics, architecture styles, etc., to be used in our architecture recommender system called ARS. However, mining big data poses many practical challenges for system implementation. The volume, velocity and variety of our data set, like all other big data systems, requires careful planning. This first challenge is to select appropriate technologies from the large number of available products for our system implementation. Building on these technologies our greatest challenge is to custom-fit our algorithms to the parallel processing platform we have selected for ARS, to meet our performance goals.","PeriodicalId":122056,"journal":{"name":"2015 IEEE/ACM 1st International Workshop on Big Data Software Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Mining Big Data for Detecting, Extracting and Recommending Architectural Design Concepts\",\"authors\":\"Mehdi Mirakhorli, Hong-Mei Chen, R. Kazman\",\"doi\":\"10.1109/BIGDSE.2015.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An architecture recommender system can help programmers make better design choices to address their architectural quality attribute concerns while doing their daily programming tasks. We mine big data to detect and extract a large set of architectural design concepts, such as design patterns, design tactics, architecture styles, etc., to be used in our architecture recommender system called ARS. However, mining big data poses many practical challenges for system implementation. The volume, velocity and variety of our data set, like all other big data systems, requires careful planning. This first challenge is to select appropriate technologies from the large number of available products for our system implementation. Building on these technologies our greatest challenge is to custom-fit our algorithms to the parallel processing platform we have selected for ARS, to meet our performance goals.\",\"PeriodicalId\":122056,\"journal\":{\"name\":\"2015 IEEE/ACM 1st International Workshop on Big Data Software Engineering\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM 1st International Workshop on Big Data Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIGDSE.2015.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 1st International Workshop on Big Data Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIGDSE.2015.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mining Big Data for Detecting, Extracting and Recommending Architectural Design Concepts
An architecture recommender system can help programmers make better design choices to address their architectural quality attribute concerns while doing their daily programming tasks. We mine big data to detect and extract a large set of architectural design concepts, such as design patterns, design tactics, architecture styles, etc., to be used in our architecture recommender system called ARS. However, mining big data poses many practical challenges for system implementation. The volume, velocity and variety of our data set, like all other big data systems, requires careful planning. This first challenge is to select appropriate technologies from the large number of available products for our system implementation. Building on these technologies our greatest challenge is to custom-fit our algorithms to the parallel processing platform we have selected for ARS, to meet our performance goals.