sofic树语言的树代数

N. Aubrun, Marie-Pierre Béal
{"title":"sofic树语言的树代数","authors":"N. Aubrun, Marie-Pierre Béal","doi":"10.1051/ita/2014018","DOIUrl":null,"url":null,"abstract":"We consider the languages of finite trees called tree-shift languages which are factorial extensible tree languages. These languages are sets of factors of subshifts of infinite trees. We give effective syntactic characterizations of two classes of regular tree-shift languages: the finite type tree languages and the tree languages which are almost of finite type. Each class corresponds to a class of subshifts of trees which is invariant by conjugacy. For this goal, we define a tree algebra which is finer than the classical syntactic tree algebra based on contexts. This allows us to capture the notion of constant tree which is essential in the framework of tree-shift languages.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"486 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tree algebra of sofic tree languages\",\"authors\":\"N. Aubrun, Marie-Pierre Béal\",\"doi\":\"10.1051/ita/2014018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the languages of finite trees called tree-shift languages which are factorial extensible tree languages. These languages are sets of factors of subshifts of infinite trees. We give effective syntactic characterizations of two classes of regular tree-shift languages: the finite type tree languages and the tree languages which are almost of finite type. Each class corresponds to a class of subshifts of trees which is invariant by conjugacy. For this goal, we define a tree algebra which is finer than the classical syntactic tree algebra based on contexts. This allows us to capture the notion of constant tree which is essential in the framework of tree-shift languages.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"486 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2014018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2014018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们考虑有限树的语言称为树移语言,它是阶乘可扩展树语言。这些语言是无限树的子移因子的集合。给出了两类正则树移语言的有效语法表征:有限型树语言和几乎有限型的树语言。每一类对应于一类共轭不变的树的子移位。为了实现这一目标,我们定义了一个比基于上下文的经典语法树代数更好的树代数。这允许我们捕捉常量树的概念,这在树移语言的框架中是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tree algebra of sofic tree languages
We consider the languages of finite trees called tree-shift languages which are factorial extensible tree languages. These languages are sets of factors of subshifts of infinite trees. We give effective syntactic characterizations of two classes of regular tree-shift languages: the finite type tree languages and the tree languages which are almost of finite type. Each class corresponds to a class of subshifts of trees which is invariant by conjugacy. For this goal, we define a tree algebra which is finer than the classical syntactic tree algebra based on contexts. This allows us to capture the notion of constant tree which is essential in the framework of tree-shift languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信